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Abstract

Air Force leaders, recognizing the need for improved training following the Vietnam

War, implemented the Red Flag exercises at Nellis AFB. At the heart of this training is the

Red Flag Measurement and Debriefing System (RFMDS) and its capability to accurately

reconstruct the elements of an intense exercise fought over the deserts of Nevada. This

thesis uses the technology of distributed interactive simulation (DIS) to transmit aircraft

telemetry onto compu~er networks, allowing the monitoring and analysis of live Red Flag

missions at any site with compatible communications equipment and thesis software. The

use of standard DIS protocols enables simulators to "see" Red Flag operations. The three

components of the Remote Debriefing Tool bridge reality with simulation. The computer

communications component serves as a transparent tap into the RFMDS data stream.

The data translation component translates this information into DIS protocol data units

(PDUs). PDUs received by the interface and visualization component are used to generate

two- and three- dimensional images of the Red Flag environment onto a Silicon Graphi ýs

workstation. An extensive set of analysis tools combined with a graphical user interface

allows reconstruction of airborne activities, producing more effective and comprehensive

training.
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A Distributed Interactive Simulation Based

Remote Debriefing Tool

for

Red Flag Missions

I. Introduction

1.1 Overview

Twenty-five years ago, in early 1968, the United States was heavily involved in the

Vietnam War. Unlike previous wars however, the air-to-air exchange ratio of our pilots

and aircraft had dropped significantly. During the World War II years of 1942-1945, air

operations against enemy aircraft achieved an overall exchange ratio of 14:1. In Korea,

Naval aviators managed a 3.2:1 kill-loss ratio despite having to fight enemy jet aircraft

with piston-driven fighters. But in Vietnam, the overall Navy exchange ratio had dropped

to 2.3:1. Statistics from the other services were no better. Combat kill ratios were the

worst in the history of U.S. aerial warfare (2:36).

Captain Frank W. Ault, USN, was given the mandate to find out why the Navy

was not shooting down more MiGs and to recommend what should be done about it.

He created five expert study teams to examine the Navy's fighter weapon systems from

"womb to tomb." This examination of the Navy's weapon system life cycle and the 242

recommendations that arose from Capt Ault's study are contained in a report that was

delivered to the Naval leadership in 1969 (2:37).

Among other findings, the report indicated that it was not uncommon to find a

combat situation in which neither the pilot nor the aircraft he was flying had ever launched

a live missile. In addition, the report cited a change in combat philosophy that had shifted

to placing more reliance on the machine than on the man. As a result aircrews were

required to "conduct a heads-up fight with a heads-down system" during man-to-man
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aerial combat (2:38). The implications were that training and combat readiness were real

problems.

These findings, among others, suggested the need for improved combat readiness

training and an air combat maneuvering range (ACMR). Thus the findings of the Ault

Report were the genesis for today's Navy Fighter Weapons School (Topgun) (2:38).

Research conducted along parallel lines by the Air Force following the Vietnam war,

yielded some of the same conclusions-aircrews received inadequate training for combat.

Air Force actions to remedy these deficiencies included the creation of the Aggressors in

1972. This organizatioD was an unprecedented opposing "Red Force" for our fighter and

attack aircrews to train against during peacetime. While the Aggressors provided a unique

capability to train against an active opposing force it did not replicate the entire Soviet

air and ground threat (16:33).

Red Flag was conceived in 1975 to provide realistic simulated combat missions for

aircrews to support three main goals (16:33):

1. train like we plan to fight;

2. train with our allies and sister services;

3. train to develop the readiness to deter war and win any conflict.

To accomplish these goals the ranges north of Nellis AFB were converted into a

simulated Soviet satellite country, complete with anti-aircraft-artillery (AAA) and surface-

to-air missiles (SAMs) protecting both tactical and strategic targets. A sophisticated $58

million aircraft tracking system was installed to track all aircraft during the mock combat.

This system is known as the Red Flag Measurement and Debriefing System (RFMDS)

(16:33). (The ACMR concept recommended in the Ault Report and developed by the

Navy was the precursor not only to the Air Force's air combat maneuvering instrumentation

(ACMI) range, but also to the RFMDS.)

At Red Flag, aircrews plan and then execute simulated combat missions into a dense

threat environment. They are required to defend themselves and their flight members

from both air and ground threats, acquire and successfully attack their assigned targets,
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and recover safely. Each mission exposes the aircrews to stressful, combat-like scenarios

and develops the skills necessary to survive in actual combat. Historically, most losses

occur during a pilot's first ten combat missions (16:33) thus completion of the Red Flag

experience is designed to be roughly equivalent to the level of experience gained during a

pilot's first few weeks of combat and pilots enter combat at higher levels of readiness.

The debrief which follows the mission is almost as important as the mission itself.

During this evaluation all participants have an opportunity to critically examine every

aspect of their flight performance and to learn how to improve their flying skills and

judgement for future missions. At the heart of the debrief is RFMDS. This tool is used

to graphically reconstruct the mission by displaying aircraft flight paths, rebroadcasting

radio communications, and replaying video tapes from "enemy" ground based threats which

depict the effectiveness of aircrew evasive maneuvers.

Not all aircrews in the Red Flag exercises takeoff from and return to Nellis AFB.

Those aircrews landing at other bases do not have the opportunity to participate in the

mass debriefs and to use the state-of-the-art technology of the RFMDS. As a result, mission

activities that take place outside of the remote aircrew's field of view go unnoticed. This

places an unnecessary handicap on these aircrews as they try to reconstruct the mission

with limited information. In order to provide instructive debriefs at the remote sites,

aircrews need to "see" the same things that are presented at the mass debrief.

According to Mr. Mike Mateyka of the 414th Test Squadron at Nellis AFB, the Air

Force recognized the need and, in 1989, established a requirement for a remote debriefing

system that mirrored the capabilities of the RFMDS. A prototype demonstration version

developed by Cubic Corporation, called the Remote Debriefing Display System (RDDS),

satisfying the Air Force requirement was used in two tests in 1990. The first test was

conducted at Nellis AFB and the second at a remote site in Indian Springs, Nevada. Pilot

reaction to the RDDS was favorable and greatly improved aircrew abilities to reconstruct

aerial engagements. It provided a level of situational awareness that was previously un-

available at remote sites. This prototype was the forerunner of the Mini DDS that is

currently under development and scheduled for delivery in 1994. Limited funding will

allow the acquisition of only three units.
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In addition to Red Flag's needs, the 57th Test Group at Nellis AFB has a desire for a

flight test analysis tool that can be used for their test missions in their own facilities. (This

analysis must currently be done at the Red Flag building.) Some of the test missions involve

aircraft and crews from the 99th Bomb Wing at Ellsworth AFB, South Dakota. At present,

personnel from the 99 BW deploy to Nellis and monitor test missions with the RFMDS.

Considerable time and money could be saved if the capability existed to monitor 99 BW

aircraft missions over the Nellis ranges from Ellsworth. Research conducted in the area of

distributed interactive simulation (DIS) provides a means to satisfy the communications

requirements of the needed remote debriefing tool.

The Advanced Research Projects Agency (ARPA) has sponsored simulation research

within the defense community for over a decade (10:1). According to Lt Col Dave Neyland,

ARPA/ASTO, this research has traditionally focused on two major areas: (a) force-level

simulations, or wargames, which test decision makers' abilities to judiciously commit forces

without large expenditures of men and material (12:44); and (b) distributed interactive

simulation which allows multiple operator or semi-autonomous-force based simulators con-

nected over a wide area network to interact with each other.

The ability of simulators to interact with operational weapon systems forms a newer,

third area of research. ARPA-sponsorra efforts in this area have already demonstrated a

limited capacity for operational vehicles and simulated entities to interact within the 6ame

virtual environment. During a SIMNET orientation briefing at Fort Knox, Kentucky, the

Navy's Battle Fleet In-Port Trainer was described. In this exercise, pilots flying helicopter

simulators exhibited the ability to take off from a simulated base, fly to a simulated Naval

port and land on one of the ships. At the same time, the real Navy ship participating in

this exercise was able to acquire, track and display the helicopter simulators on its real

radar equipment. These demonstrations represent only the beginning of the research effort

necessary to bring simulation and operational vehicles together in a common environment.

Simulator interactions with operational aircraft flying on live ranges is another facet of

this new area of research.

Together, these three research areas: wargames, distributed interactive simulation,

and live range interaction, form what has been called the ARPA simulation triangle, and
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Wargames

SDistributed

Live-Ranges InteractiveL 4 Simulation

Figure 1. ARPA Areas of Simulation Research

represent an overall vision of simulation research for the future. (See Figure 1) Significant

progress in all three areas may one day provide a means for thousands of simulators, ships,

tanks, infantry, and aircraft to participate together in "truly" large scale exercises.

Dr. Earl A. Alluisi, Office of the Director of Defense Research and Engineering,

echoed a similar vision when he stated,

We have a vision. The vision is of an interactive network that can be used
for training individual troops, sailors, marines, and airmen, as parts of the
crews, groups, teams, and units to which they belong. The network is the
key...

Thus, the Army's tank crew may have a relatively low-cost graphics-based
simulator... The flying squadrons may have more costly and more complex
computer-image-generated displays in their simulators. But with a proper net,
both types can be hung onto the net, and can be used to train combat tactical
skills in simulation of many-on-many situations. With appropriate distribution
of such capabilities, the interactive network can be used in the training not
only of individuals operating vehicle battle stations, but also of individuals in
command-and-control battle stations - the platoon or flight or individual ship,
at one end, and with the expansion to wargaming capabilities, the theater
commander, his staff, and his component commanders and their staffs, at the
other end(1:3).

According to Lt Col Dave Neyland[-lz, ARPA/ASTO, "This thesis project represents

one of ARPA's first efforts to explore the issues involved with integrating live aircraft into

Distributed Interactive Simulation by broadcasting aircraft telemetry data over computer

communication networks in a format that can be used by other compatible ground-based

simulators." These simulators would then have an ability to monitor aircraft activities on
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a live range and move around in an environment where both computer-generated and real-

world entities exist. Additionally, this project provides a debriefing tool suitable for remote

location analysis of air-to-air missions flown on the Nellis ranges and an opportunity for

the 57 TG to remotely monitor its own test missions.

1 2 Thesis Statement

A hardware and software system can be developed which proves the feasibility of

implementing a Red Flag mission monitoring and debriefing tool that utilizes the DIS

communication protocol for transmitting aircraft telemetry to remote sites and provides

an interactive interface to a state-of-the-art three-dimensional image generator. (This sys-

tem will subsequently be referred to as the remote debriefing tool (RDY)). The RDT can be

constructed with off-the-shell network communications hardware and thesis software and

is therefore dependent only upon the availability of a suitable workstation and communi-

cations equipment. The conceptual configuration of the following requirements is depicted

in Figure 2. To establish the feasiblity of such a system, the RDT must demonstrate the

capability to do the following:

1. Monitor RFMDS communications and extract those messages which contain aircraft

telemetry (aircraft position, flight parameters, and weapons control status);

2. Translate the RFMDS telemetry into DIS message formats, known as protocol data

units (PDUs);

3. Transmit the DIS PDUs onto a computer communications network;

4. Read DIS PDUs from the network and translate the information into a form usable

by the computer image generation software;

5. Display two- and three-dimensional views of aircraft flying on the range in a format

suitable for mission monitoring and debriefing;

6. Provide a simple and intuitive interface to control the various views;

7. Archive the data onto non-volatile storage; and
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DIS

Figure 2. RDT Conceptual Configuration

8. Retrieve archived data and retransmit it over the network for a mission replay capa-

bility.

1.3 Scope

The scope of this thesis will be limited to the research, software design and im-

plementation necessary to provide a basic debriefing system that can be used at remote

locations. (By definition, a basic debriefing system will mean a system that is only suitable

for monitoring and replaying air-to-air and surface-to-air mission elements.)

Central to the development of the RDT is the need to communicate over computer

networks using the DIS protocol. (This protocol is described in the following chapter.) The

DIS standard defines numerous PDU types which provide for the exchange of entity infor-

mation as well as simulation exercise management(23:22). The scope of this project limits

the implementation of PDU types to those required for aircraft entity interaction. These

PDU types include the entity state, fire and detonation PDUs. Simulation management

PDUs fall outside the purview of this project and are not implemented.
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The computer generated displays of the RDT mirror the major capabilities of the

RFMDS but do not fully emulate all its features. Additionally, radio communications

present in the RFMDS are not incorporated into the initial version of the RDT. Project

time constraints did not allow implementation of audio, although the DIS standard provides

a means for radio communications between entities.

1.4 Assumptions

This section enumerates the assumptions that were made in developing the thesis

statement and scope of this project.

1. The principle user of the RDT is someone interested in an accurate range monitor-

ing system that is capable of tracking and recording aircraft movements but who

does not require a level of detail necessary for a full engineering analysis. Aircrews

participating in the Red Flag exercises are the prime target for this project.

2. The computer image generation hardware for the RDT is a Silicon Graphics IRIS 4D

workstation. This meets the "low-cost" definition as expressed by sponsors at Nellis

AFB. Multiprocessor capabilities improve image generation speeds without altering

the basic functionality of the RDT software.

3. Existing computer network communication devices are able to transmit and receive

Ethernet packets and DIS PDUs.

4. The use of AT&T C++ or C languages is compatible with existing software applica-

tions.

5. The Silicon Graphics machines use a UNIX operating system derivative-IRIX 4.0.5

or later.

6. The third draft of the DIS version 2.0 proposed IEEE standard is the guide for

generating and interpreting DIS PDUs. (This draft is accepted by the DIS community

as the standard for applications in 1993.)



1.5 General Approach

Logically, the RDT can be divided into four major areas of effort: computer commu-

nications, data translation, user interface design and computer image generation. Within

each of these areas, a significant number of tasks must be completed before the entire

system can function as intended. Each of the major areas, and the tasks they encompass,

is described in the next few sections.

1.5.1 Computer Communications. Computer communication forms the key area

of the entire project. The premise of broadcasting live telemetry onto a distributed simula-

tion network cannot be accomplished without the ability to electronically capture the data

from the RFMDS and then retransmit that data over local and/or wide area networks.

The tasks necessary to establish the proper communication liuks are listed below.

1. Install a transparent connection onto the RFMDS that will allow data monitoring

without any message acknowledgements. This ensures that the RDT cannot interfere

with any RFMDS operations or be responsible for any system difficulties.

2. Monitor the RFMDS data stream and capture the data messages.

3. Convert the data messages into Ethernet packets for retransmission onto a local

network.

1.5.2 Data Translation. Data translation involves mapping the RFMDS data

messages into the proposed DIS standard PDU formats. In order to accomplish this func-

tion the following tasks must be completed.

1. Determine the specific RFMDS message types and formats tha. will provide the level

of information necessary for the image generation.

2. Define a mapping that will be used by the translation software to convert the RFMDS

messages into DIS PDUs.

3. Filter out unneeded messages from the RFMDS data stream and translate the re-

quired messages iuto DIS PDUs. (This translation software will need to interface
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withA network communications software in order to broadcast the DIS PDUs onto a

distributed simulation network.)

1.5.9 User Interface Design. Because the RDT computer image generation is

implemented on a single workstation, a significant effort was expended in order to capture

and mirror the complex functionality of the multiple RFMDS displays and controls. The

tasks necessary to develop a suitable user interface are:

1. Determine and then use a suitable interface design methodology that can be applied

to the development of the RDT.

2. Select from the many available input devices, such as mice, keyboard, spaceballs,

joysticks, and data gloves, those which provide the needed functionality for a set of

simple interface controls.

3. Find a set of graphical user interface tools that can be used to quickly develop a user

interface prototype. An interface prototype is a rapidly created version of some or

all of the final interface, generally with limited functionality (5:430).

4. Through a series of user tests and design modifications, develop the final user interface

configuration.

1.5.4 Computer Image Generation. Once the DIS-formatted mission data is

available at the workstation, a computer image can be generated which depicts the oper-

ations of aircraft flying on the Nellis ranges. The following tasks are necessary to develop

these images.

1. Determine the required set of display capabilities that are needed for a usable mission

debriefing tool.

2. Evaluate available computer image generation packages to determine the feasibility

of modifying them for use as the primary image generation software.

3. Develop an image generation software toolkit that can be used to provide the needed

views for the RDT.
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4. Integrate the image generation software with the user interface so that the views may

be controlled as desired. Iterate through a series of user tests and design modifications

until a suitable RDT final configuration is achieved.

1.6 Additional Thesis Support

The philosophy of this thesis project is not to develop as much new software as

possible, but to use existing software where it is available and compatible and then add

to its functionality where required. In keeping with this overall development concept, this

section introduces software available at the Air Force Institute of Technology (AFIT) that

provides many of the needed capabilities described previously.

1.6.1 Communication and Data Translation. Communications software written

by Bruce Clay exists at AFIT in the form of a set of network daemons. These daemons are

system processes which remain dormant until a request to transfer data over the commu-

nications ports is received. One of the daemons is responsible for transmitting data onto

the network while the other daemon receives data from the network and makes it avail-
able to application programs. This software was originally created for use with SIMNET

PDUs and was subsequently modified to broadcast and receive DIS PDUs. In addition,

Bruce Clay compiled a set of routines which were used to generate and monitor Ethernet

communications.

1.6.2 Object Manager. Sheasby (18) developed a set of software methods to

manage all of the information being broadcast over the network about individual entities

participating in a distributed simulation exercise. This collection of C++ classes, called

the Object Manager inserts, updates, traverses, and deletes entities from an entity class

structure hierarchy. Additionally, the Object Manager performs the dead reckoning calcula-

tions necessary for any moving vehicles (18:3). Because the Object Manager was originally

developed for use with SIMNET, modifications were made to make it compatible with the

new DIS standard.
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1.6.3 ObjectSim. Snyder (20) describes the construction of an application frame-

work which can be used to render models within a visual simulation environment. This

framework grew from the desire to reuse concepts and ideas within the graphics lab at AFIT

from year to year without having to "reinvent the wheel" for each new application. Object-

Sim provides a set of high level functions within its object-oriented class structures that

frees developers from the details of rendering geometry on the Silicon Graphics machines

and allows them greater time to deal with other simulation intricacies. This thesis project

and five additional thesis efforts, (4), (6), (21), (29), (9), used the ObjectSim framework

during the 1993 academic cycle at AFIT.

The Virtual cockpit (VC) is a flight simulator designed for use in an interactive multi-

player environment. The cockpit is constructed with commercial off-the-shelf equipment

including a head-mounted display, a hands-on throttle and stick, and a Silicon Graphics

workstation for the image generator. Sensor subsystems developed by Erichsen (4) display

the location and orientation of network players. Air and ground weapon systems brought

on-line by Gerhard (6) allow the Virtual Cockpit to employ bombs, guns and missiles in

the simulated environment.

The Synthetic Battle Bridge (SBB) (29), (21) presents an immersive, simulated en-

vironment that is used to observe distributed simulations from a battlefield commander's

point of view. The SBB is capable of interfacing to a variety of head-mounted display

devices and a Fake Space System's BOOM.

The Satellite Modeler, using the ObjectSim framework, was developed by Kunz (9).

This application depicts satellites in orbit around the earth and allow users to interact

with the satellite models. The Satellite Modeler provides an opportunity to explore config-

urations, orbital elements, and procedures which were previously very difficult to visualize.

Because each of these applications was built around a common framework, ideas and

methods were shared b'!tween them which provided additional opportunities for bringing

features and functionality to the RDT that might otherwise have been impractical because

of time constraints.
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1.7 Thesis Presentation

This thesis is divided into seven chapters and appendices. Chapter II presents back-

ground information relevant to this thesis project. In particular, the chapter provides

insight into the concepts of distributed interactive simulation, RFMDS, Silicon Graphics

image generation software and computer communications. Chapter III discusses the design

of the computer communications and data translation areas while Chapter IV describes

the design of the user interface and image generation software. Chapter V details the

implementation of the complete RDT software system. Chapter VI discusses the perfor-

mance characteristics of the software. Chapter VII recaps the thesis project and proposes

recommendations for future work.
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H. Background

This chapter lays the foundation for understanding the concepts of distributed in-

teractive simulation that are used within this thesis project. In addition, a description of

the RFMDS provides an overview and the technical details necessary to understand how

the RDT interface to RFMDS can be achieved. The final section of this chapter outlines

the characteristics of a software rendering library developed by Silicon Graphics, Inc. This

library, known as Performer, comprises the basic toolkit for generating the 3D computer

images necessary for a visual simulation application such as the RDT.

2.1 Distributed Interactive Simulation

2.1.1 Evolution. Distributed interactive simulation had its beginnings in 1983

when the Defense Advanced Research Projects Agency (DARPA now called ARPA) initi-

ated a program to enhance tactical team performance via distributed simulator networking

(SIMNET). The first conceptual demonstration was conducted in 1984 following comple-

tion of the initial system design (12:1). Thorpe reports that SIMNET was used to train

U.S. troops for the Canadian Army Trophy (CAT) Competition in 1987. (CAT 87 was the

first year that a U.S. tank team placed first.) The use of SIMNET to familiarize partici-

pating units with the exercise range and improve crew coordination, team interaction, and

command and control skills appeared to enhance the performance of U.S. Army tank units

(27:266). Subsequent tests performed in 1987 at Grafenwoehr, Germany and Fort Benning,

Georgia confirmed that the SIMNET technology "holds potential for both readiness and

new system development and acquisition (27:272)." By the end of 1987 helicopter simu-

lators had been delivered and installed at Ft. Rucker, Alabama and tank simulators were

likewise in place at Ft. Knox, Kentucky. At the completion of the program there were a

total of 250 simulators installed at more than 9 locations (12:1). SIMNET technology is

still used today to train U.S. Army tank teams around the country.

SIMNET was intended to provide a method for simulating battles involving many

vehicles by interconnecting large numbers of interactive vehicle simulators on a common

network. It was called distributed because the simulators which supported the simula-
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tion were not physically restricted to one location but rather operated on both local and

wide area networks. The formalized agreement between the content and format of mes-

sages transmitted and received on the network by the simulators was called the simulation

protocol (14:1). These protocols were primarily developed to support armored vehicle

simulations within the SIMNET environment (7:128).

"The primary mission of DIS is to create synthetic, virtual representations of warfare

environments for the purpose of practicing warfighting skills ... when cost, safety, environ-

mental and political constraints do not permit the field training and testing necessary

to maintain combat readiness(28:3)." DIS networking protocols evolved from the original

SIMNET protocols as the concepts were extencded to include all classes of vehicles, consist-

ing of high performance aircraft, surface and sub-surface naval vessels, and even satellites.

It is interesting to note that the emerging standard for the DIS protocol is very similar to

the original SIMNET protocol despite the extension to vehicles with wider ranges of ma-

neuverability. (Reference (18:13-15) provides an overview of the similarities and differences

of the SIMNET and DIS protocols.)

2.1.2 DIS Objectives. Principles of the emerging DIS standards and their appli-

cations are introduced in this section. Basic architectural concepts include (23:2):

1. No central computer controls the entire simulation exercise;

2. Autonomous simulation applications are responsible for maintaining the state of one

or more simulation entities;

3. A standard protocol is used for communicating "ground truth" data;

4. Changes in the state of an entity are communicated by simulation applications;

5. Perception of events or other entities is determined by the receiving application;

6. Dead reckoning algorithms are used to reduce communications processing.

The proposed IEEE draft in reference (23) provides a definition of each of these

concepts. This implies that the RDT must use standard protocol formats to convey the

"ground truth" of aircraft maneuvering on the Nellis ranges to other simulators. Dead

reckoning algorithms must be used to predict aircraft positions and orientations so that
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the number of transmitted PDUs can be kept as low as possible. This reduces network

communications traffic from a single simulator and increases the scale of the exercise that

can be supported on a given network.

2.1.3 DIS PDUs. DIS simulators exchange information with each other by

using a communications network. The messages which are used to convey the state and

event information within the simulation are called PDUs or protocol data units. There

are currently 27 different PDUs defined within DIS. A complete description of each of

these PDUs can be found in reference (23) and can be grouped into the following general

categories:

1. Entity information,

2. Entity interaction (such as weapons employment, logistics support and collisions),

3. Simulation management,

4. Electromagnetic Emissions,

5. Radio communications.

Of these 27 PDUs, only 12 of the PDUs have a fixed length. Each of the remaining

PDUs has a variable length dependent upon many factors including numbers of articulated

parts, numbers and types of emitters, length of audio transmissions, and amount of data.

The PDUs of principal concern for the RDT are the entity state, fire and detonation PDUs.

The entity state PDU has a minimum length of 144 bytes and conveys the identification,

markings, position, and orientation of an entity. The fire PDU has a fixed length of 96

bytes and maps a shooter/target pair to a single weapons employment event. Variable

length detonation PDUs (minimum length of 104 bytes) describe the final results of those

weapon employments. (At some future time the incorporation of other PDUs into the

RDT offers the possibility of merging radio communications with position and weapon

event information.)

Table 1 depicts the entity state PDU as an example of the content and format of the

DIS PDUs. The mapping of the Red Flag data messages to the appropriate fields within

the DIS PDUs is covered in Chapter IV.
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[Word I Field Byte 0 Byte 1 Byte 2 Byte3 3

0 PDU Header Version Exer ID PDU Type Pad
1 Time Stamp
2 Length Pad

3 Entity/Force ID Size Application
4 Entity Force # Artic Parts
5 Type Kind Domain Country
6 Category Subcategory Specific I Extra
7 Alt Type Kind Domain Country
8 Category Subcategory Specific Extra
9 Location X Component

10 Y Component
11 Z Component

12-13 Linear Velocity X Component
14-15 Y Component
16-17 Z Component

18 Orientation Psi
19 Theta
20 Phi
21 Appearance Appearance
22 Dead Reckon Parms Algorithm Unused

23-24 Unused
25 Linear Accel X Component
26 Linear Accel Y Component
27 Linear Accel Z Component
28 Angular Velocity X Component
29 Angular Velocity Y Component
30 Angular Velocity Z Component

31 Entity Marking Char Set Marking
32-33 (Marking continued)

34 Capabilities Boolean fields

Table 1. Entity State Protocol Data Unit (22)

17



2.1.4 Dead Reckoning. As seen within the example Entity State PDU of Ta-

ble 1, the PDU contains more information than just an entity's position, identification

and orientation. Dead reckoning parameters are also included and are used to extrapolate

or predict an entity's location and orientation at some point in the future. Inputs to the

dead reckoning algorithm are an entity's current location and orientation and the dead

reckoning parameters from the most recent Entity State PDU. An Entity State PDU is

not transmitted at the update rate of the originating simulator. Instead, a PDU is only

generated when the discrepancy between an entity's current position and/or orientation

exceeds a predetermined threshold(7:128).

To illustrate this concept, consider an aircraft traveling at a constant velocity on a

fixed heading. If Entity State PDUs are generated to describe the motion of this aircraft

without dead reckoning, then at each new time step of the simulation a new PDU must

be constructed and sent. If dead reckoning is used, only the first PDU needs to be created

and broadcast. As long as the aircraft remains in stable flight at the same parameters and

does not deviate from its flight path, another PDU need never be sent from the originating

simulator. This creates a problem, however, for simulators that connect to the network

after the first PDU is sent. These simulators do not know about the existing aircraft

and thus generate an incorrect image. This violates the concept of "ground truth." To

overcome this inconsistency, simulators are required to generate a PDU at a minimum

rate of one every five seconds. Thus the the greatest time delay incurred by any newly

connected simulator would be five seconds before the "ground truth" about all entities

within the simulation is received(23:24).

As one of the basic concepts underlying the DIS architecture, dead reckoning is

important because it reduces the number of PDUs which must be broadcast for a given

aircraft and minimizes network traffic. Research on a single F-16 aerial demonstration pro-

file showed that network traffic could be reduced by as much as 83 percent over continuous

postion updates. Dead reckoning also diminishes the computational processing associated

with receipt of each new PDU because fewer PDUs are received (7:128).

Dead reckoning is a tradeoff among three factors: network traffic requirements, com-

putational power, and the precision of the entity's location and orientation. The two
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factors which control these tradeoffs are the choice of the dead reckoning algorithm and

the parameters which dictate when a PDU is generated. These parameters, or thresh-

olds, represent the maximum allowable difference between an entity's predicted versus

actual position/orientation. A low threshold implies that only small deviations from the

entity's actual position are allowed before a PDU is generated. This may require more

PDTs to be transmitted as an entity maneuvers outside the threshold of its predicted

position/orientation; consequently network traffic increases. A higher threshold or larger

difference between the predicted and actual j osition/orientation may result in fewer PDUs

transmitted onto the network because of fewer deviations from the predicted movement.

This reduction decreases network traffic. The benefits of network bandwidth reduction

made possible by dead reckoning are not free. There is a significant difference in the com-

putational cost between performing a position update (copy to memory) and applying the

dead reckoning equations to calculate a new position(7:129).

Harvey points out that the dead reckoning concepts, which were developed for use

in the SIMNET armored vehicle environment, apply equally to the DIS environments

of high speed aircraft and space vehicles (7:129-130). The rate of change at which a

vehicle deviates from the steady state condition (acceleration) is the determining factor for

generating new PDUs. The majority of movements for both types of vehicles falls within

the steady state conditions and are accurately predicted by the algorithms. Harvey also

a ,ues that "there is much similarity between the rates at which armored vehicles and high

performance aircraft can change their orientations and direction of travel (7:130)." Turn

rates generated by slow moving tanks and fast moving aircraft are comparable and are

similarly suitable for dead reckoning calculations.

The DIS protocol requires that dead reckoning be performed on both ends of the com-

munication network (23:23-24). A simulator propagating an aircraft model along a given

path in its environment maintains a dead reckoning model of the aircraft movements and

transmits a PDU only when the difference between the acutal position and the predicted

position exceeds the thresholds. The receiving simulator updates the aircraft position as a

new PDU arrives. Otherwise the position and orientation of the aircraft for the remainder

of the time is computed using the dead reckoning algorithms and parameters.
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The DIS standard defines eight dead reckoning models to be used in distributed

simulation. Each of these models is a unique combination of the dead reckoning algo-

rithms. Sheasby provides a summary of the algorithms and models used in DIS (18:18-19).

Because angular and linear accelerations are not available in the RFMDS data, only zero-

order orientation and zero/first-order position dead reckoning are available for use by the

RDT. Zero-order orientation and position dead reckoning simply means that the loca-

tion/orientation is maintained constant over the frame interval (18:18-19). First-order

position dead reckoning consists of integrating linear velocity over the frame interval. The

following equations are used (18:18):

X= + Vt (1)

V = y + vyt (2)

Z = z + vt (3)

The use of these algorithms for the RDT constitutes the linear dead reckoning modtl.

Regardless of the dead reckoning model and the specific algorithms which comprise the

model, a definite decrease in network traffic can be expected.

2.1.5 Survey of DIS Applications. A movement from the SIMNET protocols to

the emerging DIS standard began in 1992. A number of DIS applications under devel-

opment are furthering the industry's knowledge of this new protocol and its suitability

for real-time, large-scale distributed simulation. This section highlights the efforts of a

handful of organizations, some affiliated with AFIT, that are developing DIS applications

to contribute to this effort.

AFIT is one of several academic institutions involved in researching the capabilities

of distributed simulation and virtual reality. The RDT and each of the applications de-

scribed in Chapter I (Virtual Cockpit, Synthetic Battle Bridge, Satellite Modeller) rely on

a common DIS entity object manager to monitor anc, transfer information to/from the

network.
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The Naval Postgraduate School (NPS) in Monterey, California has developed a real-

time, workstation based, 3D visual simulation system utilizing DIS protocols. The system,

called NPSNET, displays vehicle movements over the ground or in the air. The project

centers on the development of public domain graphics simulation software which utilizes

off-the-shelf hardware (19:2).

The Virtual Cockpit, Synthetic Battle Bridge and NPSNET DIS applications were

demonstrated in August of 1993 at the Association for Computing Machinery's (ACM)

Special Interest Group for Computer Graphics (SIGGRAPH) convention at Anaheim, Cal-

ifornia. Local Ethernet connections between two separate booths at the convention and a

T-1 line to ARPA's simulation center at Arlington, Virginia demonstrated heterogeneous

DIS applications interacting in a common environment.

The Institute for Simulation and Training (IST) at the University of Central Florida

(UCF) in Orlando has also developed a PC-based Computer Generated Forces testbed

that incorporates the DIS standard. The testbed consists of two major components: a

Simulator and an Operator Interface.

The Simulator is a tool that is used to create and control semi-autonomous forces

(SAF). A "human commander" provides the goals and objectives for the SAF entities in the

form of keyboard or script files and the Simulator makes the choices for entity movement,

route planning, obstacle avoidance, and target engagement. The Operator Interface is a

high level graphic interface to the Simulator. Instead of using keyboard or script files,

mouse-driven command menus greatly simplify control of the underlying Simulator.

Many of these DIS applications have been sponsored by the Department of Defense

for use in military training environments. Growing emphasis in each of the military services

as well as continued support from ARPA will no doubt continue to foster the development

of numerous DIS applications in the coming years.

2.2 Computer Communications

A series of communication protocols is in use at various levels below the visibility

of DIS application programs. Because of their complexity, these protocols are designed in
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Application
Presentation

Session
Transport
Network

Data Link
Physical

Table 2. OSI Model

layers to make implementation more manageable. This section gives a brief synopsis of the

protocols used in the different levels of the Open Systems Interconnection (OSI) Reference

Model and their correlation to RD T.

The International Standards Organization (ISO) developed a guide, not a specifi-

cation, for an international framework in which standards could be developed for open

communications between computers. The OSI model is the result of that proposal and

was developed between 1977 and 1984 (24:174). The seven layers of the OSI model are

shown in Table 2. The principles used to derive the seven layers are:

1. Layers are created where different levels of abstraction are needed.

2. Each layer performs a well defined function.

3. The functions of each layer are chosen with an eye toward defining internationally

standardized protocols.

4. The layer boundaries minimize the information flow across the interfaces.

5. The number of layers is a trade off between architectural complexity and distinct

functionality (25:14).

For a comprehensive explanation of each of the seven OSI layers and their functions

see Tannenbaum (25). In terms of the RDT, it is important to understand that each of

the layers provides a well-defined interface between the layers directly above and below it.

This has the advantage of isolating changes that occur within a given layer from any of

the other layers as long as the interfaces remain the same. Protocols exiet at each layer

to define the interface. A protocol suite is a collection of protocols irom more than one
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Figure 3. Simplified 4-Layer Model Connecting Two Systems

layer that forms the basis for a useful network (24:174). An example of a protocol suite, or

protocol family would be the Terminal Connection Protocol/Internet Protocol (TCP/IP)

suite used for communication between nodes on the ARPA network.

For explanation purposes in this thesis, the seven OSI layers have been simplified

into the 4-layer model used by Stevens (24). Figure 3 shows the model for two systems

that are connected by a network. The process layer consists of the top three layers of the

OSI model - the session, presentation and application layers. Application programs exist

at the process layer. The bottom two layers of the OSI model are combined into the data

link layer. The data-link layer combines the network and hardware characteristics into a

single, simplified layer.

The example portrayed in Figure 4 shows two hosts using DIS and the User Datagram

Protocol/Internet Protocol (UDP/IP) suite to communicate over an Ethernet network

(24:176). Data that is sent from one host to the other is formated according to the DIS

protocol. The dashed line between the two hosts at the DIS level does not represent a

physical connection but rather an abstraction. The actual flow of data goes down from the
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DIS/process layer through the UDP/transport layer to the IP/network layer. The network

layer passes the data through to the Ethemet/data-link layer for communication to the

other host. At the receiving end, the process is reversed going up from the data-link layer to

the process layer of the DIS application. At each step down through the layers, additional

header information is attached to the original data so that the actual data sent contains

the original DIS PDU, and a UDP header, IP header, and Ethernet header. These headers

are stripped on the receiving end as the PDU moves up through the layers. When the

PDU finally arrives at the process layer all header information has been removed and only

the DIS PDU is presented to the application.

Figure 5 depicts the standard format for an Ethernet frame or packet and shows

how the DIS PDU is packaged in the Ethernet protocol at the lowest layer. Note that

the length of the data in a single Ethernet frame may not exceed 1500 bytes (25:145). In

situations where the length of the data exceeds 1500 bytes, the data must be segmented or

fragmented between multiple Ethernet packets and reconstructed at the receiving end by

the IP layer. This simple example is particularly relevant to DIS applications, specifically

RDT, as this standard dictates the use of UDP/IP protocols for broadcasting PDUs onto

a distributed network.

Data transfer from the RFMDS to a RFMDS/DIS translator and out onto a network

involve communications at all layers over multiple machine architectures. The OSI Model
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guidelines and the standardized hardware and software implementations of the computer

industry are the key to successfully transmitting RFMDS telemetry to simulator applica-

tions.

2.3 Red Flag Measurement and Debriefing System Description

This section describes the RFMDS and provides the background information needed

to understand how the RDT interfaces with RFMDS. This includes the system elements

required to transform a modem air battle into digital telemetry data, the displays available

to an aircrew member to help reconstruct and accurately debrief a mission, as well as the

formats of the RFMDS data and overall RFMDS capabilities.

2.3.1 S-ystem Overview. In the deserts of Nevada and California lie the Red

Flag exercise ranges managed by Nellis PA'--' This area measures approximately 150 x 60

nautical miles and encompasses roughly . j)0 square miles (16:34). It is on these ranges

that the mock battles of the Red Flag missions take place and aircrews learn the tactics

that may one day keep them alive and ensure mission success. The RFMDS provides the

technological tool to monitor, in real time, up to 136 aircraft participating in an exercise

on the range. The RFMDS is capable of full state vector tracking of up to 36 aircraft

equipped with specially instrumented pods. These aircraft are referred to as high-activity

aircraft. Position tracking of up to 100 other aircraft is accomplished by sharing radar
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data from Federal Aviation Administration (FAA) gap-filler radars located on the range

complex.

In addition to position information about aircraft on the range, the RFMDS also

interfaces with up to 30 threat emitter simulators and simulates the firing of up to 50

simultaneous missiles and dropping of 22 unguided bombs for each high-activity aircraft

(16:36). The elements required to bring all of this data into a central repository and

present it to aircrews is the job of the four main elements of the RFMDS. These four ma-

jor system elements are the Aircraft Instrumentation Subsystem (AIS), Tracking Instru-

mentation Subsystem (TIS), Control and Computation Subsystem (CCS) and the Display

and Debriefing Subsystem (DDS). Each of these subsystems is described in the following

subsections.

2.3.2 AIS. The AIS is an externally mounted, 5-inch diameter pod physically

similar to the Sidewinder (AIM-9) missile. As shown in Figure 6, the AIS pod contains a

transponder, a digital interface unit, a radar altimeter, an inertial reference unit and an

air data sensor. The AIS interfaces with the aircraft systems to determine the aircraft's

flight parameters and weapon systems status. Flight telemetry and weapons data are

then transmitted over a bi-directional radio datalink to TIS ground facilities for real-time

processing (22:2-6).
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2.3.3 TIS. The TIS consists of two unmanned master stations and a total of 19

remote interrogator stations. These stations permit the exchange of data between ground-

based main frame computers at Nellis AFB and the AIS pods. Figure 7 depicts the primary

range airspace and the locations of each of the master and remote stations. These stations

are positioned to provide full coverage of the range airspace from 500 ft up to 60,000

ft. Certain areas of the range have altitude coverage down to 100ft. The remote stations

depicted in Figure 8 relay master station transmissions to the 36 high-activity aircraft, and

in turn, relay AIS air-to-ground transmissions back to one of the master stations (22:2-8).

Each master station consists of a computer, microwave datalink, UHF radios and

calibration equipment. The computer is used to process communications, measure aircr ift

positions, and calibrate TIS equipment. The datalink is the conduit for transmitting the

telemetry information back to the CCS at Nellis.

UHF radios provide the two-way communications between pilot and mission safety

observers/controllers in the Red Flag building. The calibration transponder, similar in

function to an AIS pod, enables the RFMDS to do calibration and performance checks

without aircraft on the range. One of these checks, called a 255, causes each master

station to transmit its positior back to the CCS as it is computed by triangulation from

each of the remotes. RFMDS displays then depict two stationary aircraft at each of the

master site locations.

2.3.4 CCS. The Control and Computation Subsystem is the primary processor

of RMFDS data and uses Perkin-Ehner mainframes to support communications between

RFMDS subsystems and to record system/mission data in real time. In addition, the

CCS computes the state vectors for each of the high-activity aircraft by processing range

measurements from both the TIS and AIS subsystems. The CCS computers also nronitor

maneuvering aircraft to determine whether they exceed preset limits for acceleration, de-

scent rate, angle of attack or airspeed. The final major activity performed by the CCS is to

compute weapon simulations which predict the flight paths and results of missiles/bombs

employed by high-activity aircraft. All of this data is then formated and transmitted to

the display subsystems for real-time monitoring (22:2-10),
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Figure 7. RFMDS Range Setup
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Figure 8. TIS Remote Station Assembly

2.3.5 DDS. The Di•play and; D•erien sbsytem s!eectively rmcords data re-

ceived from the CCS during live operations on magnetic disk media for post-flight analysis.

This data can be displayed on one of several DDS consoles or optionally projected onto

large viewing screens located in the deb-riefing rooms or main auditorium. Up to eight

channels of audio, UHF radio communciations, can be monitored and recorded as well.

Each of the DDS consoles contains three, full-color monitors, which present both

graphic and alphanumeric data. The graphic images generated on the displays are of two

general types, either two-dimensional (2D) or three-dimensional (3D). The 2D display,

sometimes referred to as the "God's eye view," or plan view, shows the range and aircraft

silhouettes from a vantage point high above the range.

Figure 9 shows a simplified version of the plan view. High-activity aircraft are de-

picted with 2D line drawings and low-activity aircraft are depicted with a triangle repre-

sentation. Aircraft identification and altitude information is displayed next to the aircraft

icon. Range boundaries are drawn and give accurate indications of the position of each

aircraft at all times.
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Figure 9. DDS Plan View (Simplified)

A number of options exist on the 3D displays; however, only those displays commonly

used during a flight debrief are described in this thesis. One of the primary options, the

centroid view (Figure 10), portrays aircraft, ground threats, targets, and simplified terrain

features in a 3D viewing window. This display can be centered on any aircraft, threat or

pairing of the two. Additionally, the view can be rotated 360 degrees about the vertical

axis or tilted to present a vertical representation of the range airspace, which is particularly

useful to show aircraft altitude separation.

A second option available on the 3D display is the cockpit view. This view shows the

out-the-window scene from the point of view of any of the high-activity aircraft. Again,

simple line drawings are used to render the horizon, sun, aircraft in the field of view and

the cockpit outline. Figure 11 depicts an F-16 in a descending left hand turn. Infrared

and radar missile cockpit cues are also available in this 3D display.

The third CRT monitor displays digital data in tabular alphanumeric formats. The

data covers every aspect of range operations, from aircraft and threat monitoring to equip-

ment status and testing. Only the displays used for air combat debriefing are highlighted.

The Exercise-Data display describes who the aircraft and threat participants are and the

roles that they will play during the exercise. The Pilot-Data display shows the various
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Figure 10. DDS Centroid View (Simplified)

flight parameters that would be available to a pilot in the cockpit, such as airspeed, angle

of attack, pitch, roll, heading and altitude. The Quick-Look display provides selected mis-

sion and exercise data for overview of mission participants. The Summary-Data display

enumerates the weapon firings and results for all participating aircraft and threats (22:4-1

- 4-68). In order to provide any of these displays, data must be transferred from the CCS

to the DDS where the images can be generated. The contents and formats of the CCS

messages are described in the next section.

2.3.6 R PMDS Messages. The CCS communicates with the DDS over a dedicated

data link at an aggregate rate of 1.344 megabits/second. Every 100 milliseconds the CCS

and DDS transmit data back and forth in order to maintain synchronization and to update

the status of all participants. This translates to position updates being broadcast to the

DDS image generators 10 times every second(3:A-5) and allows smooth animation of all

the aircraft on the DDS displays. A 10 hertz update rate also provides sufficient data to

perform an in-depth engineering analysis of both aircraft and weapon system performance.
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Figure 11. DDS Cockpit View (Simplified)

In the current implementation of RFMDS there are 34 different message types defined

for the CCS/DDS interface(3:A-1). These messages relay information about the following

general areas:

1. Bomb, missile and target status

2. Countermeasures

3. Radar information

4. Integrated air defense status/control

5. Participant identification and maneuver data

6. Range time

7. Radio transmissions

8. Electronic warfare weapon data.

Messages sent to the DDS in each 100 msec time slice are aggregated into a single

fixed-length buffer with the range time message first. After all messages for the time slice
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[ Word[_ Byte 0 Byte I Byte 2 Byte 3

0 Message label Blocks Words
1 Mission Id Color A/C Number A/C Type
2 Pod ID EW Designator AII
3 Spare Mission Code Logical Player

4-5 Aircraft Tail Number
6-7 Pilot Squadron or Call Sign

8-10 Pilot Name

11 G Limit AOA Limit lAS Limit
12 Pod Type A/C Group Descent Limit
13 Weapon Type (1) Weapon Type (2)
14 Weapon Type (3) Weapon Type (4)
15 Weapon Load (1) Weapon Load (2)
17 Spare

18-648 Repeat words 1 - 18 for up to 36 aircraft
649 1 Vertical Parity Word

Table 3. High-Activity Participant Data Message

have been transferred to the buffer, the contents of the buffer are transmitted to the DDSs.

The buffer is then cleared and made available for another cycle. The contents of each of

the message types varies dramatically; however, each shares a common format for header

information that is used to decode the contents of the message.

Tables 3 and 4 show examples of the high activity participant and high activity

maneuver data messages respectively. Common to both are the message label, the number

of blocks and the number of words in the message. The message label identifies the message

type and is in the range from 1 - 34. The number of blocks shows the number of aircraft

for which information is provided. The number of words indicates the total length of the

message(3:A- 42). For each of the 36 possible high activity aircraft in a maneuver data

message (type 3), words 1 to 22 are repeated and the total le-gth of the message is 3176

bytes. The messages of Tables 3 and 4 together provide all of the available and necessary

information about the identity, position, orientation and status of an exercise participant.

2.3.7 Hardware Communications Configuration. The CCS is configured with

five communication ports to which the dedicated data links may be connected. Currently,
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Word Byte 0 Byte 1 . Byte 2 Byte 3

0 Message Label Blocks Words
1 Spare Status Bits Weapons Bits Hazard Bits
2 IR Tone Interrogator ITrace Aircraft Number
3 Range Position X Coordinate
4 Range Position Y Coordinate
5 Range Position Z Coordinate
"6 Orientation/Heading
7 Orientation/Pitch
8 Orientation/Roll
9 Angle of Attack Angle of Sideslip

10 Dive/Climb Angle Pilot Yaw
11 Normal Acceleration Mach
12 True Airspeed(Knots) Indicated Airspeed (Knots)
13 Rate of Climb X Velocity
14 Y Velocity Z Velocity
15 Inventory (1) Inventory (2)
16 Inventory (3) Inventory (4)
17 TD Radar Azimuth TD Radar Elevation
18 TD IR Seeker Azimuth TD IR Seeker Elevation
19 Pulse Repetition Freq Tone Direction Finding Elevation
20 Optimum A/C Tgt Weapon Selected Radar Mode LGB Designated
22 Spare

23-792 Repeat words 1 to 22 for up to 36 aircraft
793 Vertical Parity Word

Table 4. Maneuver Data Message
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three DDS stations are attached to ports one through three. Port four is connected to a

VAX computer that is used to prepare hard copy printouts of mission elements for later

distribution to aircrews for post mission analysis. Port five is not normally connected;

although it has the additional capability to extract selected messages from the C0S data

stream under program control.

Because port four is not connected to -DDS, it is configured such that acknowledge-

ments from the VAX computer are not required. This forms a one-way data stream from

the CCS to the VAX, making port four the optimum point for a transparent connection

of the RDT to the RFMDS. All information that is transmitted to the DDSs is sent to the

VAX when port four is turned on except digitized audio data. This means that another

audio data source must be found if the eight channels of radio communications are to be

made available to the RDT.

2.4 Performer

Inherent in any visual simulation application is the need to reduce the complexity

involved in developing the image generation and improve the performance or rate at which

the images can be displayed on the computer screen or display device. Because the RDT

shares many of the attributes of a visual simulation, these same needs apply. Silicon

Graphics, Inc. has attempted to solve some of the complexity associated with developing

visual simulations with their Performer library. This library is an effort to create a stan-

dard set of procedures specifically designed to meet the needs of visual simulation. This

section provides a brief overview of Performer, and the Performer Programmer's Manual

is recommended as the definitive reference.

Performer is a library of C-callable routines that create a new interface to the SGI

graphics pipeline. This interface vastly improves a number of areas of the graphics library

(GL) interface that comes standard with each SGI platform or machine. The Performer

library removes many of the chores associated with programming the SGI, and captures the

corporate expertise of SGI for programming their hardware pipeline into practical routines.
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Figure 12. IRIS Performer Library Hierarchy

The main components of the Performer toolkit are two libraries. One library, libpr,

provides optimized low-level rendering functions, state control, and other fundamental real

time graphics functions while the other library, Ibpf, provides a visual simulation develop-

ment environment that layers multiprocessing, database traversal and rendering on top of

the libpr library. Figure 12 illustrates the relationship between an application program, the

performer libraries, the IRIS Graphics Library, and the ERIX operating system (11:2-1).

As the figure indicates, the application program has direct access to all of the performer

library functions as well as free access to the graphics library and operating system func-

tions. This allows general development within the performer framework and specialized

development with the graphics libraries as required.

Performer maintains an internal data structure, called the geometry tree, which is

traversed during the rendering process. This tree contains the common geometry types used

on the SGI. Geometry nodes, or geodes, can hold polygons, triangle meshes, light points,

and many other types of geometric primitives, and are the leaves in the geometry tree.

The tree also holds additional information that is useful in changing the characteristics

and presentation of the final image. Examples of the types of additional information
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Figure 13. IRIS Performer Node Hierarchy

are: switching distances and models to be used when a different level of detail is desired,

animation sequences, and the types of coordinate system used by the various geodes.

Because the geometry tree is not dependent on a particular external geometry format,

any format which can be converted to the Performer internal geometry format can be

employed in the tree. This conversion is done through file reader routines that are used

with one of three different geometry formats- Multigen '.fit' format, SGI '.sgi' format and

a '.bin' format. The Multigen fit reader allows all of the power and hierarchy expression

available with the Multigen modeling tool, which makes it ideal for use in Performer

applications with minimal effort.

Performer also maintains state information in the tree. These nodes, called geostates,

hold details about mate:ials, textures, transparency, lighting conditions, and other facts

which are normally part of the GL state. This allows Performer to easily render multiple

textures, transparency, and effects, through its built-in state management features. Figure

13 depicts the hierarchy of different nodes that can be used to build an application database

(11:5-2). More complete information about each of these nodes and their properties can

be found in the documentation supplied with the Performer software.
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Perfor-mer renders its geometry tree very efficiently. According to Silicon Graphics,

Performer maximizes frame rates for the SG geometry pipeline. This implies that the

limiting factors for efficiently rendering a set of geometry are dependent on the complexity

of the geometry and scene management, not on rendering code efficiency, when Performer

is used.

Another breakthrough in Performer is obtained through its multiprocess manage-

ment features. Performer provides an abstract, easy to use model for using up to three

processes on a multi-processor machine. This model dedicates one process to drawing,

one to culling, and one to the application managing the scene. (Culling is the process of

removing geometric objects from the scene because they are not visible within the current

field of view.) These processes are then distributed among the available processors and

communicate with each other through shared memory. This feature is also extensible to

machines with more than one rendering pipeline.

Other features in Performer include multiple channels (viewports) into a scene, an

easy to use viewing model, and an extensive math library. Performer has built-in collision

detection features, intersection testing, and special effects processing (fog, haze, time of

day, earth-sky, etc.)

All of these features and routines combine to provide a libiary of computer image

generation software that is adaptable to applications in the visual simulation environment

and specifically to the development of the RDT. Chapters 3 and 4 build upon this back-

ground information to construct the designs for the computer communications, translation

and image generation functions of the RDT.
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IfL Computer Communications and Data Translation Design

This chapter presents a pattern, or design, for creating two major components of

the RDT: the ccmputer communications component (CCC) a .d the data translation com-

ponent(DTC). Issues related to the user interface and visualization component (IVC) are

addressed in Chapter IV. A description of each of these two components begins by first

stating the objective or functional goal that the implementation must achieve and then

defining the operating characteristics or constraints under which the system must oper-

ate. Next, possible approaches to accomplishing the design objective are enumerated along

with their advantages and/or disadvantages. The reason for selecting one approach over

another for the final design is also indicated. Finally, each component description details

the algorithms, methods and devices chosen to carry out the plan of attack.

3.1 Computer Communications

The two principal objectives of the computer communications component (CCC) are

to (a) install a transparent device into existing RFMDS data lines to create a one-way

data stream that can be used to monitor data messages sent from the CCS to each of the

DDS computers; and (b) reformat and broadcast the data messages as Ethernet packets

onto a local area network for use by the DTC. (The requirement to use the Ethernet

protocols in the data link layer is self-imposed because of the availablity of both software

and hardware at AFIT that can be used to transmit, receive, and monitor Ethernet packets.

In addition, Ethernet has a 10 megabit/sec (Mbps) bandwidth (25:144) that is easily

capable of delivering the 1.344 Mbps of data sent by the RFMDS.)

3.1.1 Communications Analysis. Figure 14 represents the RFMDS hardware

configuration describe,, :n Chapter II. The CCS and the three DDS computers are located

on the ground floor of the Red Flag building in the main computer room. Ports one through

three of the CCS are each connected to one of the three DDS computers. Each DDS

computer controls two DDS consoles which are located in debriefing rooms throughout the

building. A total of six DDS consoles are available for simultaneous use to either monitor

live missions or replay past exercises for mission debriefs. The communications channels
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DDS Consoles

Figure 14. RFMDS Hardware Configuration

between the CCS and DDS computers are bi-directional data streams and many CCS to

DDS messages require DDS acknowledgements.

The VAX computer connected to port four, is physically located in a room adjacent

to the CCS/DDS computer room. Data sent to the VAX from the COS is transmitted using

the CCITT V.35 protocol using Pilkington fiber modems. The fiber modem retransmits

the messages using Pilkington's proprietary protocol over a fiber optic cable to a second

Pilkington fiber modem. This second modem converts the data back into the original

V.35 protocol and forwards the messager to a Talon c'ummunications card within the VAX

computer. Message acknowledgments from the VAX computer are neither required nor

expected.

Workspace for AFIT computers located across the hail from the VAX computer in

room 115/116 is a straight-line distance of approximately 50 to 75 feet. A fiber optic cable,

installed by Cubic Corporation (the RFMDS developer), connects computers in room 116

to a DDS console in room 234 (one of the six debriefing rooms).
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Discussions about the software programming of the RFMDS with Bill Saucier, former

Cubic Corporation engineer, revealed the following essential information.

1. Messages to be sent to the VAX computer are accumulated into a buffer before being

transmitted as a single fixed-size data block. (The maximum size allowed for the

data block is 8000 bytes, but the full capacity is rarely used. The VAX computer is

set to receive only 6144 byte blocks.)

2. The first message within each block is the range time message.

3. Subsequent messages are placed sequentially in the block until either there are no

remaining messages for the current 100msec time slice, or the block is filled to ca-

pacity. These events trigger a parity calculation and the transmission of the data

block.

4. A series of three or more bytes containing the hexidecimal value 'Ox7f' preceed the

data messages in the block. A single hexidecimal byte containing 'Oxif' in the message

type field signals the end of any further messages in the block.

5. Excess space at the end of the fixed-size block is unused.

3.1.2 Design Resolution. The hardware and software characteristics, as well as

the details of the system's physical layout described above, present a number of possible

approaches for the design of the CCC. This section examines each of the possibilities and

presents the rationale behind the selection of the final design.

At least three possibilities exist for installing a communications monitoring device

into the RFMDS data stream. The first option involves connecting directly to the unused

port, number five, of the CCS. Such a connection, however, would require a software

modification to the RFMDS kernel and many hours of dedicated system development time.

The potential for problems introduced by modifications into an already complex system far

outweigh any benefit that could be derived by using this method over other possibilities.

Even the slightest inconsistency in the interface with the CCS could negatively impact the

day-to-day operations of Red Flag and violate our major design objective of transparency.

Connecting to port five was not considered a viable option.
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Figure 15. Possible 'T' Junction Placements

The other two possibilities both involve creating a 'T' junction into the communica-

tions link between the CCS and the VAX computer attached to port four. The difference

between the two approaches is in the placement of the junction. Option one, depicted in

View A of Figure 15, places the 'T' into the fiber link between the Pilkington modems.

Option two puts the 'T' between the second Pilkington modem and the VAX computer.

In order for option one to be successful, a fiber splitter must be inserted between

the two modems. Because the protocol used between the modems is proprietary, a third

Pilldngton modem at the end of the 'T' is necessary to recover the original V.35 data.

Discussions with the distributers of the Pilkington modem revealed that the modems cur-

rently in place in the RFMDS are no longer manufactured and upgraded replacements

are available at substantial cost. Placement of a fiber optic splitter into the fiber cable

would potentially cause a reduction in signal strength at the second Pilkington modem.

Information was not available about the extent of any such signal reduction and its impact

on normal operations.

View B of Figure 15 shows the 'T' junction placement between the VAX and the

Pilkington modem. The only protocol to be dealt with here is V.35 and the purchase of
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an additional modem is not required. This option offers the simplest design at a minimum

cost.

Another problem arises due to the fact that CCITT V.35 is a short range protocol

and is not intended for signal transmissions over medium to long distances. The 50-

75 foot distance from the VAX computer to the available work areas makes the use of

V.35 impractical. To overcome this difficulty, an intermediate protocol, with transmission

capabilities to cover the 50-75 foot distance between computers can be used but this

requires another device to make the conversion.

The search for a means to convert the data from V.35 to a suitable protocol produced

only one device capable of the required 1.344 Mbps rate over the 75ft distance-a CCITT

V.35 to RS-422 converter. (RS-422 is capable of transmitting up to 2Mbps over 60 meter

cables (25:77).) This type of converter makes it possible to receive the data messages in

room 116 over an R.S-422 cable at the required data transmission speeds.

The final hurdle in establishing the transparent link is the conversion from RS-422

to Ethernet. This problem, however, does not lend itself to the use of a simple converter

because of an anticipated need to save the RFMDS messages onto non-volatile storage

media. In addition, preliminary examination of over 30,000 data blocks from a single

Red Flag mission revealed that approximately 30 percent of the space in the blocks was

unused. A significant reduction in the amount of data transmitted to the DTC can be

achieved if the device used to convert from RS-422 to Ethernet can be programmed to

filter out the unused data from the data blocks. These two factors dictate the use of a

computer/workstation to perform the conversion, storage and filtering.

The final hardware design for the computer communications component is shown

in Figure 16. It illustrates the use of a 'T' junctiou between the Pilkington modem and

the VAX computer. Data messages in the V.35 protocol are routed to a computer for

conversion to Ethernet and retransmission to the DTC.

3.1.3 Software Methods. The tasks to be accomplished by the conversion program

involve reading the data from port four, parsing the blocks into individual messages and

43



PilkngtonFiber Modems

VAX~

Proro VProtocol

Potocol Converter
Et RS-422

Figure 16. Final Design of the CCC

transmitting them onto a network as Ethernet packets. A simplified algorithm written in

a "C"-like computer language best illustrates how these tasks can be accomplished.

while (Data available at the V.35 port)
{

Search for start of message bytes (Ox7f Ox7f Ox7f);
Read data block into buffer;

/* Parse the data block until "end of data" */
while (message type not equal to 'Oxff')

Get next message;
Add Ethernet header information;
if (message length > max Ethernet packet length)

Segment message into allowable packets;
}
Output message to Ethernet port or
Archive message to disk;

} /* end inner while */
} /* end outer while #/
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The design of this algorithm causes each message type to be transmitted as an inde-

pendent unit rather than dividing the data block into maximum sized Ethernet packets.

This necessitates the transmission of more packets, yet it also simplifies the processing of

messages by the DTC because the messages have already been extracted from the block and

can be used immediately upon receipt without reconstruction and parsing. This algorithm

also eliminates the transmission of unused bytes in the block because parsing ceases once

the "end of block" message type is seen. The high speed at which the DTC must operate

to perform the data translations creates the need to reduce the amount of processing.

3.2 Data Translatton

The principle objectives of the data translation component are to receive RFMDS

messages containing the aircraft telemetry from the CCC and translate them into the

formats prescribed by the DIS standard. This may involve something as simple as copying

the data from the Red Flag message buffer into the DIS PDU buffer; or it may involve

a series of complex computations. The final objective is to broadcast the DIS PDUs

using a best effort, multicast communication service. (Broadcasting messages to a group

of network stations instead of a single site is called multicast communications (25:144).)

During the presentation of this section a number of issues are raised which are particular

to the simulation of high performance aircraft yet have no current resolution within the

DIS standard. Insights gained during the design phase of the DTC may benefit others who

are attempting to incorporate telemetry from live aircraft into a DIS environment.

3.2.1 Data Translation Analysis. In order for the RFMDS messages to be trans-

lated from their native frame of reference to the DIS frame of reference there are three

basic ideas which must first be understood concerning the fixed formats of RFMDS and

DIS.

1. The difference between the floating point number formats of RFMDS and DIS;

2. The difference between aircraft orientations in the RFMDS and DIS frames of refer-

ence;
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3. The frequency of RFMDS aircraft updates for high/low activity aircraft and weapon

simulations;

This subsection addresses each of these issues in turn. It should be noted however, that

while the RFMDS message formats have been in place for a number of years now, the DIS

formats do not enjoy the same stability. Changes to the DIS standard are constantly being

proposed. Thus, issues raised here as unresolvable may be fully resolved and incorporated

into some future version of the standard.

3.2.1.1 Floating Point Representation. Floating point numbers in the

RFMDS messages use a different format than the IEEE 754-1985 floating point standard

prescribed in the DIS (23:76) standard. Whereas the IEEE standard describes a 23 bit

fraction, 8 bit exponent and a sign bit (26:570), the RFMDS floating point format uses a

24 bit fraction, 7 bit exponent and a sign bit. This nonuniformity between formats requires

that each floating point number in the RFMDS message buffer be converted to the IEEE

754 standard format before being placed within the DIS PDU. In addition, the floating

point conversions must be accomplished prior to the use of these numbers in any calcula-

tions within the DTC because the hardware and software within the SGI computers uses

the IEEE standard. Conversions between the two floating point formats add a significant

computational cost to the translation.

To get an idea of the computational cost to perform these conversions, assume that

there are 36 high activity aircraft whose position is being updated. For each of the 36

aircraft there are approximately 10 maneuver data messages that are broadcast each sec-

ond. In every maneuver data message, each of the 36 aircraft has 9 floating point numbers

representing its location, orientation and velocity that must be converted. This requires

that 3240 floating point conversions be completed each second. Algorithms designed to

perform these computations use approximately 588 CPU cycles per conversion (15). This

brings the total number of CPU cycles/per second (MIIS 4D/440 VGXT) which must be

dedicated solely to the floating point conversions to 1,905,3 20.
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3.2.1.2 Aircraft Orientation/Location. The cost of performing translations

between the RFMDS and DIS frames of reference for an aircraft's orientation/location in

a non-standard DIS "flat earth" environment is largely absorbed into the floating point

calculations. (In a "flat earth" environment, the curvature of the earth is ignored.) If

however, the DIS standard is strictly adhered to and the WGS84 geocentric coordinate

reference system is used, then an additional significant cost is incurred in translating and

rotating the location and orientation of each aircraft into the geocentric coordinates. (More

information on coordinate conversions can be found in Erichsen (4).)

3.2.1.3 RFMDS Updates. As indicated earlier, the RFMDS provides posi-

tion updates for each of the high activity participants at approximately 10 hertz.

This 10 hertz time differential between RFMDS blocks cannot, however, be taken

as absolute. In one sample of 1,000 consecutive blocks of RFMDS data, roughly 97% of

the message blocks were transmitted within .1 ± .02 seconds. The remaining 3% however

were well outside the 10 hertz interval. Figure 17 shows an impulse plot for each of the

1,000 time intervals sampled. Note that the occurrence of time intervals outside of the

specified 10 hertz update rate is not regular and thus not suitable for use as an absolute

time increment. These irregularities suggest that dead reckoning algorithms use the time

differential computed between successive RFMDS message blocks rather than some fixed

time interval approach designed to minimize delta time calculations. Likewise, an approach

that uses a real-time clock to compute time differentials for dead reckoning purposes will

be in error roughly 3% of the time and cause erratic position updates.

Updates for low activity aircraft are sent at irregular intervals and generally exceed

the 12 second maximum time interval between DIS entity state PDUs. On some occasions,

update intervals between low activity aircraft have been as long as 25 seconds. This causes

a problem in the DIS world because entities which are not updated within 12 seconds are

to be deleted from the simulation (23:25). This should not be allowed during the replay

of a Red Flag mission due to the distractions caused when low activity aircraft constantly

disappear then reappear when they are deleted and reinserted into the exercise.
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Figure 17. Time Differentials between Successive RFMDS Messages

Because one of the RDT's objectives is to provide a debriefing tool that can be used

to portray the activities of a given Red Flag mission, it is important that the images

displayed by the RDT represent the mission as accurately as possible. In the case of low

activity aircraft where position updates occur less frequently, a decision must be made

whether or not to perform dead reckoning. If dead reckoning is performed for the low

activity aircraft then the position of the aircraft at time t follo'i ag a position update is

qu~estionable. Consider a low activity aircraft whose position has just been updated via

an entity state PDU. It begins a standard rate turn, but because another update for this

aircraft may not come for as much as 25 seconds, it will appear on the RDT displays to

continue in a straight line for 25 seconds and then abruptly move to its new position as

shown in Figure 18.

If dead reckoning is not performed, another problem occurs. Consider the case where

that same aircraft begins a turn and dead reckoning is not used. The RDT image will show

only the last update without further aircraft movement. Upon receipt of the next position

update 25 seconds later, the new position is displayed. Figure 19 accurately portrays a
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history of actual aircraft movements, in contrast to misleading flight paths of low activity

aircraft that have been dead reckoned.

Simulated weapons employed during a Red Flag exercise also have state vector in-

formation transmitted at the same rate of approximatly 10 hertz. One entire processing

unit of the CCS is dedicated to simulating weapon trajectories and results for up to a

maximum of 50 weapons. These updates are calculated and packed into a RFMDS mes-

sage block during each 100 msec cycle that weapons are active. Unfortunately, however,

only a coordinate location is generated. Weapon velocities and orientations are not part

of the weapous data message and must be computed in order to provide sufcient data for

both the dead reckoning algorithms and the placement of that information into the fire,

detonation and entity state PDUs.

The last item that should be mentioned relates to the total number of position

updates that can be expected during a typical Red Flag mission. Data collected during a

44 minute and 39 second mission flown on 15 July, 1993 contained approximately 800,300

position updates. This data includes the full flight path histories of more than 40 aircraft

and numerous missile shots. If these updates were to be broadcast as entity state PDUs,

this would require, on average, the transmission of roughly 283 PDUs every second for the

49



Upa at tim ti

Di4qIayed Flih ASM h

Updft attim to

Figure 19. Low Activity Aircraft Positions without Dead Reckoning

duration of the mission if dead reckoning was not performed and this would be a significant

load on an Ethernet local area network (LAN).

3.2.2 Design Approaches. Although there are many ways to construct an al-

gorithm which performs the data translations from RFMDS to DIS, a straight-forward

approach, which acrepts data from the RFMDS and then translates it sequentially into

DIS PDUs, is described in the next subsection. The principle issues addressed in this sub-

section relate to the mapping of the information contained in the RFMDS data messages

to the appropriate fields within each of the DIS PDU record types. Examination of the

data within the RFMDS messages suggests that the information can be grouped into the

following general categories:

1. Available in RFMDS telemetry messages and directly transferrable to DIS PDUs.

2. Available in RFMDS telemetry messages but not transferrable to DIS PDUs (Data

can be reconstructcd from information within the PDU)

3. Available in RFMDS telemetry messages but not transferrable to DIS PDUs (Data

can not be reconstructed from information within the PDU)

4. Required in DIS PDUs but not available in RFMDS telemetry messages
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Data that is available in RFMDS telemetry messages and directly transferrable to

DIS PDUs includes such items as: location, orientation, and linear velocity. Although

each of these items may need to be converted to standardized formats, the information is

available and can be converted in a straight-forward manner.

Angle of attack and rate of climb must be reconstructed from information placed in

the DIS PDUs that is extracted from RFMDS telemetry messages. Both of these items

can be calculated from the aircraft's velocity and orientation vectors and would be an

unnecessary addition to information already contained within the DIS PDUs.

Examples of data that can not be reconstructed from information in the DIS PDUs

but is available in RFMDS telemetry messages includes the following: true airspeed, in-

dicated airspeed, mach number, crab angle, angle of side shp, weapons status, current

selected weapon, radar azimuth/elevation, infrared tone frequency, and infrared seeker

azimuth/elevation. Some of this information, for example indicated airspeed and mach

number, is related to the density and temperature of the atmosphere. Atmospheric data is

not currently available in the DIS protocol; and thus this information is not available to DIS

applications. It might be argued that the data in this category need not be transmitted to

other simulators, yet one of the purposes of the RDT is to provide as much of this type of

information to aircrews as possible so that accurate assessments of their performance can

be made. It is often the case that the radar or infrared seeker azimuth/elevation depicted

on the aircraft's head-up display (HUD)in the RFMDS cockpit view is used to identify

which aircraft is being targeted at the time of a missile launch. DIS protocols make no

provision foi" this type of information. Even if this data were to be contained within the

DIS PDU, it could not be used reliably because dead reckoning suppresses broadcast of

the majority of the PDUs and generation of new entity state PDUs is not dependent on

this dynamic data.

Examples from the final category include DIS specific items which are unrelated to

the RFMDS messages. Some of these items include: version, exercise ID, time stamp,

site, host, appearance, and dead reckoning parameters. Most of this data can be easily

generated for inclusion into the PDUs, however, linear and angular accelerations .-re not
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found in any of the RFMDS data messages. If included, these accelerations must be

calculated and stored in the PDU.

Information that falls into category 1 can be simply converted and put into the DIS

PDUs. A discussion about possible options for completing this task would be pointless.

Information in category 2 does not requixe placement into DIS PDUs and therefore requires

no special procedure to make a conversion. Most of the data in category 4 can easily be

generated and a discussion about wayr to create and store this data in the PDUs would

also prove of little value.

The task of translation of the RFMDS telemetry messages in category 3 into DIS

PDUs can be solved a couple of interesting ways. One approach is to place as much of the

data as possible into unused or pad fields of currently defined PDUs. This allows the data

to be broadcast, but deviates from the established protocols. This approach also has the

advantage of retaining the defined sizes of the DIS PDUs without causing an increase in

network bandwidth. These deviations may require considerable redesign and effort if the

formats of the PDUs change and the unused/pad fields, previously ignored by standard

DIS applications, are now used.

A second approach calls for the cmeation of RFMDS-specific PDUs. These PDUs

would be ignored by other applications but wouid be intercepted and used by the RDT.

Although this approach preserves the formats defined within the DIS standard, it also

generates a number of questions. First, how often does this information need to be trans-

mitted? In other words, if dead reckoning suppresses broadcast of the majority of the

PDUs, should these special PDUs with time sensitive, dynamic data be suppressed also?

What effect will a significant number of non-standard PDUs have on the network band-

width? Will sufficient bandwidth still be available if the scale cf the exercises increase?

These questions bear serious consideration and warrant further research.

3.2.3 Design Resolution. Now that the significant issues and options have been

explained, this subsection presents the final functional design used to implement the DTC

and the rationale behind these design decisions. In a manner similar to the description of

the CCC design, a "C"-like language is used to characterize the algorithm which translates

52



RFMDS messages into DIE PDUs. Next, the decision to perform dead reckoning calcu-

lations for only the high activity aircraft and weapons is explained. The final portion of

this section details the mappings of data from the RFMDS message formats into the DIS

PDUs.

8.2.3.1 Software Methods. The tasks necessary to translate the RFMDS

message formats into DIS PDUs are very straight forward and include retrieving a message

and then performing the appropriate activity based upon the message type. This process

can best be illustrated by the following algorithm.

while (RFMDS ressages are available)
{

Read message into buffer;

/- Handle each message type individually */

s~i',cŽ• (message type)
{

case TIME:
set range time;
break;

case HIGH ACTIVITY MANEUVER DATA:
for each .%ircraft
{

perform dead reckoning calculations;
if (send this PDU - TRUE)

Fill & send Entity State PDU;
} /* end for */
break;

case LOW ACTIVITY DATA:
for each aircraft
{

Fill & send Entity State PDU;
} /* end for */
break;

case HIGH ACTIVITY ?ARTICIPANT DATA:
case LOW ACTIVITY PARTICIPANT DATA:

fcr each aircraft
{

Replace old participant data
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with new data;

I /* end for */
break;

case WEAPONS:
for each weapon

if this is a fire event
Fill & send Fire PDU;

else
if this is a detonation event

Fill & send Detonation PDU;
else
{

perform dead reckoning
calculations;

if (send this PDU -- TRUE)
Fill & send Entity State PDU;

1 /* end if */
1 /* end for */
break;

/ /* end switch */

} /* end while */

3.2.3.2 Weapons and High Activity Aircraft Dead Reckoning. Evident in the

preceding algorithm is the design decision to perform dead reckoning calculations for only

the weapons and high activity aircraft. The reason behind the decision not to dead reckon

the low activity aircraft primarily rests with the concern to present an accurate depiction

of tl- e low activity aircraft flight paths rather than continuous, potentially inaccurate,

movements. This is not a concern for the high activity aircraft and weapons because of

their frequent position updates.

It should also be noted that the time interval used in the dead reckoning calculations

is computed from the time between successive RFMDS range time messages and not a

real-time clock in the DTC. This ensures that the time interval corresponds to the actual

time interval in the RFMDS data and guarantees that delays due to operating system

activities will not be introduced by using the system clock.
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3.2.3.3 Data Mappings. Perhaps the simplest format for describing the fnal

design for mapping RFMDS data into DIS PDUs is a set of figures which graphically depict

where data found in the RFMDS messages is placed into the DIS PDUs. Accordingly, the

next several figures represent each of the RFMDS message types that are used in the DTC

and the mapping of their information into the entity state, fire and detonation PDUs.

Figure 20 shows how entity state PDUs are generated for high activity aircraft from the

high activity participant and maneuver data messages. Figure 21 displays the mapping of

data for low activity aircraft from the low activity participant/data messages. Figures 22,

23 and 24 depict the mapping of RFMDS weapons data messages into fire, entity state

and detonation PDUs.

Highlighted in the figures are the fields in the DIS PDUs that are not used or are filled

with constant data. Unused fields in the PDU are due to the fact that the RDT represents

a basic system, limited in scope, that was developed as a "proof of concept" and not a

full-scale commerci 21 product. Thus some of the information that could be transferred to

the DIS PDUs and used in the image generation software, such as articulated parts fields,

is not currently used, but is available for future implementations.

Fields in the DIS PDUs that aae depicted with the double box represent compromises

to the DIS standard. Information placed within these fields reside in pad fields or unused

areas. RFMDS time stored in the first 4 bytes of a 15 byte unused field within the dead

reckoning parameters is a good example of how RDT modifies some of the DIS PDUs to

provide a capability that is not available in DIS. The Zulu, or Greenwich Mean Time,

depicted by RFMDS on all of its displays is a critical component for aircrews when they

debrief their missions. The times of key events, such as missile shots, are recorded by the

pilots as they fly. Later during the mission debrief, these events are compared with the

time correlated displays of the RFMDS and used to confirm shots/kills. The DIS time

stamp in the PDU header only allows for an indication of the time passed since the current

hour (23:86). This would cause some ambiguities on Red Flag missions which extend

over several hours because events occurring during one hour of the exercise can not be

distinguished between events happening in other hours. A zulu time stamp resolves all of

these ambiguities and is therefore placed within the PDU.
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Close examination of Figure 20 reveals that a significant amount of information about

the aircraft flight parameters is available but not transferred to any of the fields in the

DIS PDUs. The design of the DTC as it currently stands does not provide a means for

this information to be transferred to the IVC. Future modifications to the DTC and IVC

might develop a non-standard PDU specifically to transfer such data between components

of the RDT.

3.3 Summary

Now that the CCC and the DTC designs have been presented, it is easy to see how

these components can be referred to as the preprocessor components of the IVC. Blocks

of data containing RFMDS messages are transferred from the R.FMDS to the CCC using

the V.35 protocol. The CCC parses the data block into individual RFMDS messages and

transmits the messages, using the Ethernet protocol, to the DTC. The DTC parses each of

the RFMDS messages and constructs DIS PDUs that are then broadcast onto a simulation

network. The IVC described next, is located at one of the nodes on the simulation network

and is capable of interpreting the DIS PDUs and rendering images which represent the

activities described by .,he data.
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IV. User Interface and Visualization Design

The organization of this chapter deviates somewhat from that of the previous chapter

because of the numerous ways a user interface and visualization component (IVC) could

be designed. It would be impractical, if not impossible, to identify and address every

conceivable option that could be considered for the design of the IVC. Therefore, the

approach taken in this chapter is to identify and describe the design methodology as it

was used to create the interface portion of the IVC and then illustrate how the ObjectStm

framework was adapted to meet RDT visualization needs.

4.1 User Interface Design

Foley et al. (5:391) define the key goals in user-interface design as:

1. Decrease time required to learn how to use the interface to perform a given set of

tasks;

2. Decrease time required to perform the tasks with the interface;

3. Reduce the number of errors;

4. Encourage rapid recall of how to use the interface;

5. Increase attractiveness to potential users.

These goals form the foundation for the design of the IVC. A credible debriefing tool

should be easy to learn and allow a user to quickly display crucial mission elements with

minimal effort. A minimum effort implies, among other things, that little time is wasted

correcting errors. Because opportunities to use the debriefing tool might be far apart, the

procedure to perform tasks with the interface should be easily remembered.

In order to create an interface that achieves these goals, a methodology outlined by

Foley (5:429) was used. This methodology encompasses the following steps.

1. Determine what the interface is meant to accomphsh by learning what tasks are

currently being performed and how they are completed.

62



2. Work through the conceptual, functional, sequencing and binding design levels to

prepare a top-down design for the interface.

3. Use an interactive process of rapid prototyping and user testing to create a version

of the interface with the desired functionality.

Each of Foley's design levels, conceptual, functional, sequence and binding, (5:394-

395) are duplicated here for convenience. TLe conceptual design defines the principle

application concepts that must be mastered by the usei. The functional design, also called

the semantic design, specifies functionality or meanings, but not the sequence of actions or

the devices with which they are conducted. Sequence design defines the ordering of inputs

and outputs and is also called the syntactic design. The binding design specifies how

hardware devices/primitives are used to generate inputs and produce the desired outputs.

The input primitives are the set of input devices that are available, including any of the

following items: mouse, spaceball, keyboard, data glove, polhemus sensor, etc. Output

primitives are the shapes, (such as lines and characters) and their attributes (color, font)

provided by the graphics subroutine package. The presentation for this section is organized

according to the three activities outlined in the methodology: interface definition, top-down

design, and interactive prototyping.

4.1.1 Interface Definition. Mastering air-to-air combat tactics and maneuvers

is one of the most challenging tasks facing aircrews in today's Air Force. The difficulty

of the -rhallenge is compounded by the very nature of air-to-air combat. No two missions

are exactly the same and the lessons learned against adversaries on one mission may not

be applicable to the adversaries, environmental conditions and scenarios encountered on

other missions. Financial resources, once available, are dwindling and the high cost of

generating sorties to learn and practice combat skills results in fewer sorties for individual

aircrews. Each sortie represents an invaluable step towards achieving proficiency in the

combat arena. It is said that "a picture is worth a thousand words" and in the air-to-

air arena it is equally true for it is the image or set of images about a past engagement

that are remembered long after the hours of discussion and verbal contention about what

really happened during a mission have passed. Systems or tools which can graphically
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reconstruct the events of a sortie magnify the impact of any successes or failures because

these graphic depictions can readily be cross-referenced mentally to the actual images seen

during the fig? '. Thus one of the tasks of any debriefing tool must include an accurate

portrayal of the mission environment from any point of view, especially that of the pilot.

Other tasks identified over the course of this thesis project are a result of discussions

with analysts and test pilots from the 57TG as well as personal observations of mission

debriefs that were conducted using the RFMDS. Enumerating these tasks will create a

baseline functional description of the RFMDS capabilities that need to be mirrored in the

final design of the IVC. The following list identifies many of the tasks that are currently

being conducted at Red Flag. Each task description is accompanied with the method or

procedure used by RFMDS to complete the task. (Note: This list is far from exhaustive

in terms of the full capabilities of the RFMDS but does encompass the limited scope of

the thesis project.)

1. Simultaneously present centroid, cockpit or plan views, and exercise/flight parameter

data to the user. This is accomplished with three separate monitors at the DDS

console.

2. Provide the capability to examine any area of interest from an overhead point of view

by manipulating the plan view so that it can be enlarged/reduced and/or panned to

any location on the range. Panning is accomplished by moving the joystick control

in the desired direction. Twisting the zoom knob on top of the joystick enlarges the

current scale by up to two times (22:4-12 - 4-16).

3. Focus the view area of interest upon a subset of high-activity aircraft and/or threats

and allow the view orientation angles to be modified (Azimuth ± 180°and elevation

0 - 900). Azimuth and elevation angles are modified via thumbwheels. Aircraft are

selected by pressing the desired aircraft's select button (22:4-26 - 4-31).

4. Present a pilot view showing all high-activity aircraft and threats. Allow this view

to be manipulated to show orientations from 12, 3, 6, and 9 o'clock. The view is

selected via the PILOT VIEW button on the DDS console. A series of four buttons is

used to select the desired view orientation (22:4-32 - 4-35).
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5. Show a view from one of several ground-threat positions. This view is selected by

pressing the THREAT BORESIGHT button and a threat select button (22:4-88).

6. Display the mission information about participants, mission role, call sign. Press-

ing the EXER DATA button on the console selects one of several screens containing

information about high-activity, low-activity and threat participants (22:4-40 - 4-44).

7. Show dynamic flight data for each aircraft to include mach number, true airspeed,

indicated airspeed, angle of attack, pitch, roll, heading, etc. (22:4-44 -4-45) Select

this view by pressing the PILOT DATA button.

8. Provide system/flight parameter display useful for technical evaluation. Some of

these parameters include normal acceleration, mach number, angle of attack, position

components, velocity components, tracking filter status and others. This view is

selected by pressing the ENGR DATA button (22:4-45 - 4-47).,

9. Present a chronological list of significant mission events to include simulated weapon

firings and detonations along with the results. The list should also include the bear-

ing, range and closing velocity from the weapon to the target. Scan vertically through

this list of events by using scroll bar buttons on the DDS console (22:4-52 - 4-53).

10. Allow aircraft-aircraft pairing. This provides the display of slant range, bearing,

closing velocity, altitude difference, angle off the tail (aspect angle), and antenna

train angle. The display should be capable of pairing up to eight aircraft and is

selected by pressing the FLIGHT DATA, A/C A/C, AND Row/COL buttons (22:4-

70).

11. Show infrared (IR) and radar missile-lock indications (22:4-72). Software controlled.

12. Display representations of the radar and IR missile seeker angles on the pilot view

with square and diamond icons. This symbology is available by selecting ACM mode

when in the pilot view (22:4-76).

13. Monitor aircraft communications on up to eight channels. Enable the desired audio

channel via buttons and volume control knobs on the DDS console (22:4-114).

14. Depict a history of the aircraft's flight path by showing flight path trails on the views.

This is selected via the HISTORY TRAIL button on the console.

65



The following additional tasks were ,ilso identified as desirable but are not part of

the RFMDS capabilities.

1. Provide a view into the scene from a position afi 11 an aircraft along its velocity vec-

tor. This corresponds to a wingman's view from a trail position. Allow manipulation

of the view orientation in any direction.

2. Show an aircraft's bearing and range from a known geographic reference point. This

point, known as a bullseye point, is used by weapons controllers as a standard ground

reference for describing aircraft locations to multiple dispersed flights.

3. Detach from a wingman's view and "fly" through the scene to achieve a view from

any conceivable position or "chase" mission participants through their maneuvers as

a "phantom" wingman.

These lists represent a significant subset of the tasks necessary to completely analyze

an air-to-air exercise and present a cohesive picture of all of the aircraft activities during

a mission.

4.1.2 Top-Doum Design. The designs necessary to achieve the capabilities de-

scribed above include conceptual, functional, sequence, and binding. The following sub-

sections detail the composition of each of these levels.

4.1.2.1 Conceptual Design. The initial design strategy of the RDT was

not to create a totally new system requiring extensive periods of retraining in the way a

debriefing might be analyzed with a new tool, but rather to mimic the familiar ways of

the RFMDS as much as possible and then make new methods available which can extend

current capabilities. Achieving this goal requires the consideration of three main factors.

1. The RDT is to be implemented on a workstation with a single monitor unlike the

RFMDS DDS console with its three monitors that can simultaneously present three

different views into the mission. Thus monitor "real estate", or the amount of screen

space available for the various views, is the driving factor in the overall design for

the IVC. The need to display simultaneous views suggests the use of a windowing
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technology and a window manager to manage the sizing and placement of views on

the workstation. Multiple views displayed simultaneously on the workstation implies

that the size of the individual windows must be small enough so that one window

does not cover up the contents of another. Small windows, however, obscure details

that might otherwise be visible in a larger window and thus suggest an additional

feature that would allow a window to be expanded up to the full screen size of the

monitor.

2. Custom hardware control devices such as the thumbwheels, joystirks, aad large but-

ton arrays of the DDS console work well with the DDS but are not readily available

and would require a sigrificant effort to manufacture and interface into the SGI

computer hardware and software. New contrn's for manipulating the views and

data should be rimple to use, without sacriii:..g controllability; and they should

not require an inordinant amount of tiLie to mi ke the transition from one system

to anothei. These factors suggest the use of common computer interface devices,

such as the mous'; or keyboard, to provide the needed viewing control functions and

operating system inte.rface.

3. The PIC viewing controls should allow the tasks listed in the preceding subsection

to be completed at least as easily and quickly as the controls of the RFMDS and

still provide a measure of extendibility. (Easy, in this context, is defined as requiring

minimum numbers of controls to perform a single task, as well as a minimum amount
oi memorization as to the location and fimction of each button, knob, dial, etc.) This

criterion suggests the need to keep a simple set of powerful controls contained within

a small area so that time is not wasted due to large hand movements which might be

necebz to control either the devices themsel" tr or the views. These controls should

also provide a consistent appearance and responcz so that errors are minimize!d and

the application of one control device is easily transferrable to other tasks.

Figure 25 represents the RDT conceptual interface design derived from the major consid-
erations identified above and frcm the list of tasks specified eallier.
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The monitor screen space is partitioned into four equal areas or windows. The top t-

areas are set aside for the plan, or overhead, view and one of three possible 3D-views. The

3D views are the centroid view, the cockpit or pilot view, and the tether view. The centroid

view focuses the viewing volume upon up to four aircraft and automatically repositions

the view volume to keep these centroid aircraft in sight at all times. The tether view, or

the wingman's view, shows a display from a trail position behind any of the aircraft as

they maneuver through the environment. The cockpit view is self-explanatory.

The lower left-hand area is reserved for displays requiring the presentation of textual

data and is referred to as the data display area. The data displays are the flight data, en-

gineering data, exercise data and summary data. The flight data display shows the values

of some of the aircraft flight parameters available to a pilot. The engineering display pro-

vides technical information regarding aircraft position in the RFMDS coordinate reference

frame. The exercise data presents a list of all of the aircraft which have been active on the

range, their identitiec, and their roles. The summary data display provides a chronological

list of all of the weapon events received during the mission.

The lower right-hand area is used exclusively to control each of the views and data

displays through a mouse driven graphical user interface (GUI). This area is referred to

as the control area. Use of the mouse and GUIs to directly manipulate control objects

minimizes the need to memorize numerous keyboard sequences and provides familiar visual

representations which can easily be assimilated. Some objects on the control panel also

create other mini-control panels that are overlaid onto the data display "-ea and removed

when no longer needed.

Each of the graphics windows (3D views or plan view) in the top areas can be

expanded to fill the full width of the monitor or enlarged to fill the full screen. While a

view is enlarged to fill the full screen, the control panel window is hidden. Manipulation of

the views is restored by bringing the control panel back into view and operatin - .he contiol

objects. The mini-control panels available are the help panel, centroid panel, attributes

panel and the event logging panel. The help panel provides information regarding the

manipulation of control panel objects. The centroid panel specifies which aircraft axe to be

centered within the centroid view. The attributes panel allows aircraft attributes, such as
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color and length of flight path history trails, to be modified while the event logging panel

identifies the filename to be used as an archive for the weapon events.

The combination of the plan and 3D views, data displays, and the control panels com-

prise the RDT user interface and work in concert to achieve each of the tasks identified

earlier. As with all things, there are a few exceptions to this statement. Audio communi-

cations cannot be monitored by the RDT at this time. This capability was identified as

outside the scope of this thesis., Display representations of the radar and IR seeker an-

gles have likewise been postponed pending resolution of design and implementation issues.

The procedures or sequences of steps needed to pcrforn each of the listed tasks within the

framework of the RDT user interface design are identified in the next section as part of

the functional/sequence design of the RDT.

4.1.2.2 Functional and Sequence Design. In keeping with the design phi-

losophy stated in the previous section, mimicking old ways, the functions of each of the

controls of the DDS console were used as a template for developing the user interface.

Each knob, button, dial, and joystick of the DDS console was examined and categorized

according to its function and context in which it was used. GUI objects were selected which

emulated the functionality of the DDS controls. This does not mean, however, that the

GUI objects are identical in shape, size or location to the DDS controls. As an example, a

thumbwheel on the DDS console i.s used to rotate the centroid view about a vertical axis;

a slider designed into the RDT performs an identical function although the appearance is

somewhat different.

The functional design specifies the meanings behind a series of actions; whereas

the sequence design defines the ordering of the actions. This section strays from a pure

portrayal of either design and instead combines the action sequences into a series of state

transition diagrams reflecting control panel object manipulations. In nearly all cases,

the user interface merely sets/resets information that the application uses to control the

visualization. Separate functional definition diagrams would be of little value and are not

provided. The format used to illusoLate the diagrams generally follows the format defined

by Rumbaugh (17:84-112) for his dynamic model notation.
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One concept not readily apparent by looking at the state transition diagrams is the

ability of the IVC to exist in multiple states concurrently. This property is called shared

control and is used in some user interface management systems in which subroutines are

executed in response to user inputs. (This concept is described more precisely later in the

discussion about rapid prototyping.) As long as a GUI object is capable of "recognizing"

an input, its subroutine will be called. In the RDT design, any sequence of buttons may be

pushed as long as a button remains "active." An active button, or GUI object, responds

to manipulation and causes a state transition. An inactive GUI object cannot xespond to

manipulation and therefore cannot cause transitions to intermediate states. As an example

of this shared control, a user can change the current view type while he is in the process of

modifying the flight data control information. By activating/deactivating buttons, a path

through a set of intermediate states can be set up which completes a complex activity.

Any beginning state which establishes a complex activity is called a "complex state," or

"command state." The IVC can be transitioning through several states at the same time

as long as buttons remain active on the control panel. A line with arrowheads on both

ends signifies a transition to a "command state" and a concurrent return to the "neutral

state." The dynamic model for the entire interface portion of the IVC is shown in Figure

26. The initialization state is not shown. Shaded boxes indicate "command states" which

are diagrammed in figures contained in Appendix A.

4.1.2.3 Binding Design. The binding design deterrmines how input and

output units of meaning are formed from hardware primitives (5:395). In the case of the

RDT this translates to the selection of specific input devices and to the output primitives

necessary to create the scenes displayed on the monitor. The primary focus of this sub-

section is on the input devices chosen for the RDT. The output primitives, namely fonts,

lines, line width, polygons, colors, and textures are largely determined by the geometry of

the models used to represent the terrain and aircraft flying in a Red Flag exercise. The

Performer software described earlier is responsible for rendering the geometry, therefore

no further hardware output binding design is given.
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A number of input devices were considered for incorporation into the RDT but only

three were selected for the first implementation. The following list identifies the devices

which were considered and the reason that each was either adopted or disregarded. (While

reviewing the list it is important to remember that the purpose of the RDT is to prove the

feasibility of implementing a tool for remote debriefing that uses the DIS protocol and not

to specifically conduct research regarding the optimum set of input devices. The task is

to create a set of suitable devices that make control of the visualization consistent, quick,

easy, and error free.)

1. Keyboard - This device is included with every workstation and forms the backbone

for communicating with the processors. Using any of the keyboard keys to control

events within the interface allows rapid switching of control parameters. Familiarity

and availability of the keyboard make the keyboard a must for RDT.

2. Mouse - This input device is included as part of the '?DT for basically the same

reasons as listed for the keyboard. A mouse is included with each workstation and is

a familiar input device. It is one of several direct manipulation devices that permits

smooth hand motion to translate into smooth cursor positioning. Precise positioning

is more natural and easier to- accomplish on direct manipulation devices than on

discrete devices, such as keyboards (5:351). In the world of "windows" and "window

managers" a mouse lends itself well to the manipulation of GUI objects because of

the preponderance of software written which utilizes the mouse for accomplishing

selection and positioning activities.

3. Voice Recognition System - A voice recognition system would provide an excellent

hands-off view manipulation device; however, work with a voice recognition system

at AFIT confirms the experience of others regarding voice recognizers, namely that

there are significant limitations. Some of these limitations include: the need to

recalibrate the recognizer for each new user (variations in the voice wave patterns,

such as occurs with a cold, also require recalibration), a limited vocabulary, and the

requirement to pause between words to signal that the end of a word has occurred

(5:355).
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Delays encountered recalibrating the device for each new user could make the overall

system seem unattractive in an environment where new users change frequently and

time management is critical. Adoption of a voice recognizer into the RDT must wait

until these limitations can be overcome.

4. Joystick - The joystick is another direct manipulation device which could be used as

part of the interface. They are readily available and easy to use; however, they are

generally limited to movement with only two degrees of freedom and are awkward if

movements other than pitch aid roll are desired (i.e. a twist.)

5. Spaceball - A third direct manipulation device considered for the RDT is the space-

ball. Like the joystick, precise positioning is difficult yet the design of the spaceball

often includes an arm support which allows the fine motor control muscles of the

hands and wrists to be used. Unlike the joystick, the spaceball allows movement over

six degrees of freedom and greatly enhances the ability to control view orientation

angles in any direction.

6. Other - Other high technology devices such as the data glove and Polhemus tracker

were considered impractical because of time delays involved with calibrating and

donning/doffing the device-, the level of effort required to implement the interface,

and the scope of the thesis project. Future modifications to the RDTmight reconsider

using alternate input devices.

The final design of the OVC calls for a keyboard, mouse and spaceball as the standard set

of input devices.

4.1.3 Interactive Prototyping. The final step in the design methodology outlined

in this chapter dictates that an interactive process of rapid prototyping and user testing be

used to narrow down the final interface design. This subsection highlights the character-

istics of a user-interface management system (UIMS) that was used to develop the initial

prototype, and presents the final designs chosen for the GUI objects as a result of iterative

design techniques.
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4.1.3.1 User-Interface Manag,.ment System - Forms. The development of

the initial prototype was created by using a UIMS called Forms. A UIMS is a software tool

which can assist in defining not only the form of an interface, but also admissible action

sequences. Some UIMSs also provide an interactive design medium through which all of the

attributes of a GUI can be defined, for example size, color, location, and input response.

Another characteristic of a UIMS that makes it attractive as a tool for developing interface

prototypes is the concept of shared control. An application built on top of a UIMS is typ-

ically written as a set of subroutines, called semantic action routines, which are called in

response to user inputs. The UIMS is responsible for calling the appropriate semantic ac-

tion subroutine to complete the desired task. (This is the "call-back" paradigm mentioned

earlier.) In return, these action routines influence the set of acceptable action sequences

available within the application and dialog control is shared between the application and

the UIMS(5:457).

The Forms UIMS was developed as a library of subroutines that can be used to build

up interactive forms of buttons, slidtia, input fields, dials, etc. in a simple way for Silicon

Graphics workstations. It was written by Mark H. Overmars at Utrecht University, the

Netherlands, to overcome the problems of high cost, limited capabilities, and difficulty

in using other UIMSs, and Forms is available in the public domain. His design goal was

to create a tool that was simple to use, powerful, graphically good looking, and easily

extendable (13:i). The Forms UIMS uses the shared control concept described previously

and relieves a programmer of the burden of mapping device inputs to appropriate action

routines.

The Forms library also includes a design tool which facilitates the construction of

forms by interactively allowing GUI objects to be placed, scaled, and moved in a simple

way. Object attributes, such as color, labels and fonts, can be changed easily (13:35). This

tool, called the Form Designer, was the primary development tool used to construct the

interface prototype of the IVC. The design process used to create the interface prototype

proceeded in the following manner.
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1. A color scheme was chosen to provide a pleasing appearance and consistent mapping

between colors and activities associated with them. Because color interactions can be

a complex issue, a known, commercially proven, color scheme was chosten to minimize

development time and benefit from previous research. The RDT reproduces the colors

of the Turner color scheme used by Silicon Graphics in the Case Vision software.

2. The Form Desigrer was used to create the various interface forms dictated by the

conceptual design and containing all of the required GUI objects. These objects were

grouped according to functional tasks, and action sequences were defined in terms

of "call back" subroutines. Forms "call back" subroutines are procedures that are

invoked in response to a Forms event, like pushing one of the buttons or moving one

of the sliders.

3. "Call back" subroutines were written and then integrated with the Forms subroutines

into a prototype interface.

4. The interface was tested by personnel of the 57TG and by former RFMDS console

operators to ensure consistency, speed of use, and correct sequence of actions. Errors

which were discovered were subjected to a subsequent iteration through the Form

Designer and/or revision of the "call back" routines as required.

Although this design process began well before any of the visualization software wks

implemented, it continued throughout the entire thesis project. As new methods and

features were added to the 1VC, successive repetitions through the prototyping process

were conducted until a suitable interface was developed which met the overall interface

design goals identified at the beginning of this chapter.

4.1.3.2 Final Interface Design. The following sets of figures contain the

final interface forms created with the Forms Designer. They are reproduced here to show

the format and content of the final design. The color scheme can be observed by referencing

Appendix E. The illustrations are presented according to functional groupings with the

master control panel pictured first in Figure 27. Each of the Forms Designer created

forms, now called panels or windows, corresponds to tasks which are available from either

the "neutral state" or one of the other "command states." The master control panel
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Figure 27. Master Control Panel

corresponds to activities available from the "neutral state." The centroid panel in Figure

28 corresponds to the view management command state. Tasks available in the data

view/pair command states are activated via GUI manipulations on the data view or pair

panels depicted in Figures 29, 30, 31, 32, and 33. The help panel shown in Figure 34

coincides with the help command state. The panel in Figure 35 is used in the refine

command state while the panel in Figure 36 is used in the attributes command state. The

last panel presented in the series is actually the first panel to be displayed upo IPVC start

up Figure 37 is used to set the initial view and view modifier configurations of the IVC.

Timt following section describes how the user interface is incorporated into the Ob3ectSzm

framework, to form the complete WVC.

.2 Visuahzaton

The visualization software contained witlhn the RDT is principally built around the

O63ectSim framework developed by Snyder (20) Aircraft and terrain geometry models are

rendered by SGI hardware and Pcrfoimcr software ti, )ugh the Ob3cctSzm interface. The
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Figure 30. Exercise Data View Panel

Figure 31. Flight Data View Panel
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Figure 32. Summary Data View Panel

Figure 33. Pair Data View Panel
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Figure 34. Help Panel

Fig-ire 35. Refine Control Panel
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Figure 36. Attribute Panels

Figure 37. Configure Panel
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design of the IVC uses the principles of inheritance to derive subclasses of the ObjectStm

class structure. These modifications to the basic framework allow the RDT application to

be tailored to the specific needs of the Red Flag environment. This section briefly describes

the ObjectSim class structure and then shows how RDT specific classes are incorporated

into the overall design of ObjectSim. The section concludes by describing the design con-

siderations needed to integrate the RDT user-interface with this ObjectSim application.

4.2.1 ObjectSim Framework. ObjectSim was designed as a set of reusable com-

punents in a C++ class library to provide a high-level wrapper around the Performer

library and its programming paradigm, namely a wide interface into an image generation

data structure. It is intended to be a standard interface that encapsulates the common

functionalities of DIS simulations into readily-available, high-level services. Visual simu-

lations, in their simplest form, consist of a basic set of classes: application, model, and

renderer. The application propagates one or more dynamic models through the scene while

the renderer displays the corresponding geometry depicting the simulation. The ObjectSim

framework builds upon these simple concepts and creates a set of classes which not only

perform these simplistic activities, but also provide built-in functionality for managing ter-

rain, attaching views, and interfacing with various input devices such as helmet mounted

displays or spaceballs.

Figure 38 is a high-level representation of the ObjectSim framework. Rumbaugh

object model notation (17:21- 57) is used to convey the relationships between classes.

The Simulation class contains zero to many Player objects, a Renderer object, a Terrain

object, multiple View objects and zero-to-many Flt.Model objects. The Simulation class

is responsible for multi-player tasks such as propagating players, switching views, and

attaching views to players. The Player class is used as a repository of state and attribute

information about specific entities participating in a simulation. In addition, the instances

of the Player class, known as View players, may also be associated with a view and perform

their own draw functions using SGI graphics language (GL) subroutines. The Terrain

class encapsulates the movement of the terrain into a near-transparent operation so that

either round or flat earth operations can be performed with minimal effort. (In ObjectSim
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terrain is moved under a view player instead of moving the view player over fixed terrain.

This is done to minimize floating point precision inaccuracief which occur as a result of

player movement located at some far distance from the terrain origin. Keeping the view

player fixed at the origin and moving the terrain relative to the player ensures sufficient

precision to express the exact location and guarantees that no visual artifacts, such as jitter,

appear.) A "'iiew object is associated with the Renderer and images drawn by Renderer are

assigned to a View. View modifiers dynamically allow devices such a& spaceballs or helmet

mounted displays (HMDs) to change the view orientation parameters for total control of

the viewpoint and view orientation. The Flt.Model class representb the geometry of active

entities in the simulation.

4.2.2 RDT Modifications. Tailoring of the ObjectSim framework is accomplished

by deriving subclasses from the basic class structure and overriding methods to perform

new tasks. The IVC design for the RDT requires modification of the Simulation, Player,

and View classes. Figure 39 shov. s the RDT derived classes along with a set of new classes

needed to complete the full design of the IVC.

The RDT Application is a Simulation which has been modified to perform additional

initializations specific to the RFMDS environment such as loading translation tables which

map RFMDS aircraft types into DIS entity types. The RDT View is a View with additional

methods that allow it to attach the rendering to one of the view players. The ObjectSim

Player is used as the base class for two new RDT players, the RDT Player and the RDT

View Player. The RDT View Player has additional metbods which perform GL drawing

into the scene. The RDT Player contains attribute information th.;r is not part of the base

Player class. Using the methods in the RDT View Player, the identity of the active RDT

Players can be shown in the form of a number or their specific call sign.

A set of new classes is needed to interface the ObjectSim framework to the commu-

nications network where the DIS PDU information is being received and interpreted. The

Object Manager, developed by Sheasby (18), is the bridge to the distributed simulation

network. Methods accessible to the IVC allow network information to be incorporated into

the simulation. The RDT Net Manager is responsible for polling the Object Manager for
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current network information and then propagating each of the RDT Players through the

scene based upon either new or dead reckoned coordinates. The RDT Event Manager also

polls the Object Manager and accepts a hst of current events which have been received

since the last update. The events are stored semi-permanently in an Event Queue and are

used to trigger animation sequences in the scene such as weapon detonations. The RDT

Model Manager contains methods to determine the location of the appropriate geometry

files that are needed to associate with an RDT Player.

4.2.3 User Interface Integration. The integration of the user interface with the

RDT App.ication is designtd such that all interaction with the RDT Application is done

through a common control data structure. Changes to desired view parameters are stored

in the shared structure by the user interface. These changed parameters are then read and

interpreted by the Application and used to adjust the simulation views as requested. This

shared control structure design makes it possible to completely change the form of the user

interface without affecting the code or operation of the RDT Application. In reality, the

user interface is more than just a single class. It encompasses all of the Forms semantic

action subroutines into a Controller class as well as general utilities that axe needed as

part of the initialization of the interface. Because the Forms software is generated in the

"C" language, the user interface is also the bridge between the "C++" RDT Application

software and these "C" subroutines. Figure 40 illustrates the communication between

the two activities or processes through the shared control structure. The format of the

illustration uses the notation of the Rumbaugh functional model (17:123-144).

This completes the description of the IVC design in particular and the overall RDT

design in general. Chapter V discusses the implementation of these designs into the "C-++"

and "C" languages on Silicon Graphics workstations.
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V. Implementation

Implementation is the translation of the design into a target language for a target

machine. This chapter presents the details of the implementation process for each of the

three major components defined earlier: CCC, DTC, and IVC. The organization of this

chapter follows accordingly.

5.1 Computer Communications Component

The CCC is a combination of several serial devices and a single software program,

called Convert, which perform a single high-level function-conversion and retransmission

of RFMDS message blocks from the V.35 protocol into Ethernet. This section is divided

into two subsections which describe the CCC's hardware and software elements.

5.1.1 Hardware. The final design of the CCC in section 3.1.2 identified the need

for a "T" junction, a V.35 to RS-422 protocol converter, and a computer workstation. The

actual hardware used to implement the "T" junction consists of two additional V.35 to

RS-422 protocol converters.

Figure 41 portrays the full implementation of the CCC. Data arriving from the Pilk-

ington fiber modem on the VAX computer side of the connection enters the first protocol

converter where it is converted to RS-422. An A/B switch box is used to form the actual

"T" and channels RS-422 data to the remaining two protocol converters. The converter,

which is "in line" with the VAX link, restores the original V.35 signal for use by the VAX

while the remaining converter is colocated with the computer workstation some distance

away. RS-422 facilitates the data transmission over this moderate distance. This last

converter reconstructs the V.35 signals from the RS-422 and makes them available to the

computer workstation.

One of the early obstacles of the project was the lack of detailed information about

the specific hardware protocols used by the RFMDS. The construction of an "active T"

with three V.35 to RS-422 converters was a short term solution adapted to an an unknown

environment. Future implementations may chose to limit the number of serial devices in

the data pipeline by eliminating the third converter and performing the conversion in the
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1. Convert V.35 to Ethernet

2. Filter out unused data from the message blocks

3. Provide disk storage for mission data.

5.1.2 Software. The Convert program is the only software part of the CCC.

Convert, written in the "C" language by Bruce Clay, a software engineer on staff at AFIT,

incorporates an ACB5 device interface that was adapted from a low-level interface template

provided with the ACB5 board.

Clarksen packet drivers from the public domain are used for the Ethernet network

interface. A UDP/IIP point-to-point protocol was chosen over TCP/IP because of uncertain

timing requirements. It could not be readily determined whether the CCC workstation

could use the TCP/IP protocol with its error checking and device acknowledgements and

still maintain the high data rates of the RFMDS. (Data errors encountered during TCP/IP

communications require that the data be retransmitted. ) Numerous retransmissions could

slow the CCC and cause incoming data from the RFMDS to be lost. Rather than design

the CCC to guarantee that all packets arrive intact at the DTC, selection of the UDP/IP

protocol optimized the transmision speed of the CCC.

The algorithm specified in section 3.1.3 provides the level of detail necessary to

understand the implementation of Convert. The only detail of the implementation which

needs to be emphasized is the difference between the message blocks sent from the RFMDS

to the CCC and the individual RFMDS messages retransmitted by the CCC. A message

blocks consists of one or more different, individual messages. Typically a message block

contains the range time message first and then is followed by a maneuver data message,

low activity data message, range status message and others as required or until the block

is filled to capacity. The CCC parses the message block into the individual messages and

sends each as a single logical Ethernet packet. Several modes are available as command

line switches which allow data to be read from the V.35 port or from a file. An option is

available to transmite data out the Ethernet port or save it to disk. See Appendix B for

specific details about available command line options.
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5.2 Data Translation Component

Unlike the previous component which consisted primarily of hardware devices, the

DTC is principally software which relies on the hardware network interfaces to perform its

task. The responsibility of the DTC is to accept individual RFMDS messages, translate

the data from the RFMDS message formats into DIS PDUs, and transmit the PDUs onto a

simulation network. The means whereby hardware and software were combined to complete

these tasks are presented in the following subsections. The final subsection introduces the

modificiations made to the Entity State and Detonation PDUs that are not in compliance

with the existing DIS v2.0.3 draft standard.

5.2.1 Hardware. The target machine for the DTC was a Silicon Graphics work-

station. The decision to use the SGI was based primarily upon the availability of SGI

workstations in the AFIT graphics lab and familiarity with the SGI software suite and not

on any hard requirement for a top-of-the-line graphics engine. Given the availability of a

compatible Ethernet interface and a high- speed processor, any workstation could theo-

retically perform the translation task of the DTC. Section 6.1.4 discusses the performance

issues relative to the use of single processor versus multi-processor machine for running

the DTC software. Future hardware implementations of the DTC should examine the

feasibility of running the CCC and DTC software on a single multi-processor workstation.

This could further reduce the number of serial devices in the pipeline and decrease the risk

of pipeline failure.

Additional hardware required to complete the DTC consists of a Delni fan-out box

for Ethernet connections, two fiber-to-ether modems, and fiber optic/Ethernet cables. Fig-

ure 42 shows the addition of the DTC equipment to the CCC devices. The fiber-to-ether

modems and fiber optic cable is used only to demonstrate the capability to transfer the

data across high-speed communication lines, such as might be done on a commercial T-1

line used in wide area networks. Local use of the DTC only requires that Ethernet cables

be connected from the Delni fan-out box to the IVC workstation.
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5.2.2 Software. The software for the DTC c:onsists of two major components, a

network daemon capable of broadcasting DIS PDUs and the Readred translation program.

The daemon is the sole network interface for Readred and is described by Sheasby (18:47-

57). (The daemon description (18) actually refers to an earlier version used with SIMNET.

This daemon was modified to use the DIS protocol in subsequent versions and is currently

undocumented. Some concepts of the SIMNET version still apply.) The algorithm design

given in section 3.2.3.1 for the DTC provides sufficient detail to understand the structure

of Readred with three notable exceptions-external control, internal data structures, and

orientation determination for weapons.

5.2.2.1 External Control. Readred was originally written to allow a sep-

arate process to control the operation of the program through UNIX sockets. A socket

is a special UNIX file type that allows client and server processes to pass data back and

forth (24:28,261).

The motiviation for establishing an external interface to Readred was to allow a

separate user interface to control Readred's operating modes (read from file, read from

network), transmission speeds (start, stop, .5x, lx, 2x, ...x times normal speed), and data

filtering capabilities (translate info for all aircraft, or translate only a subset of aircraft.)

The user-interface and Readred would together form a software element capable of replaying

Red Flag missions from saved data files for aircrew analysis. Code exists within Readred to

initialize the sockets and perform the communication, but this feature has not been fully

implemented.

5.2.2.2 Internal Data Structures. Readred's internal data structures consist

of fixed length buffers and arrays. These structures promote simplicity and speed in a

stable RFMDS environment. Early software profile analysis of Readred revealed that more

than 38% of the CPU cycles used during the translation of 1,000 blocks of data were

spent performing floating poin. conversions between the RFMDS floating point format

and the IEEE format. Further examination uncovered the fact that several of the floating

point data fields from the RFMDS message buffers were accessed multiple times during

the PDU generation process. This required expensive floating point conversions to be
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performed several times for a single data item. The solution to the problem was to create

an intermediate data structure, or table of objects, in which all of the floating point data

could be converted once and then made available for other subroutines as necessary. This

data structure was also used for storing identification information and previous position

and velocity values for dead reckoning calculations.

Figure 43 illustrates the configuration of the arrays and buffers. Data received in

the RFMDS message buffer is parsed and copied to the object table. The object table

is a fixed length array with reserved elements. Elements 1 - 99 are held for high activity

aircraft. (Growth potential is available since only 36 aircraft can be tracked as high activitiy

aircraft at once.) Elements 100-199 are designated for low-activity aircraft. Weapons data

is reserved for elements 200-249.

The RFMDS aircraft number is the key for storing aircraft data in the object table.

For instance, data for high-activity aircraft number 36 is stored in object table element 36

and data for low-activity aircraft number 105 is stored in the object table at elemeut 105.

High-auLivity aircraft can only be differentiated from low-activity aircraft by their aircraft

number, which equates to an RFMDS slot number. The logical player number, a unique

number in the range of 1-255 that is assigned to each aircraft for an entire mission, does
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not distinguish between aircraft types. (Types must be discernable in order to correctly

construct the DIS PDU.) All maneuver data messages use the aircraft number and not

the logical player number as the key. In order to reduce constant mapping of the aircraft

number to a logical player number and to keep a consistent interface for users familiar with

the RFMDS numbering scheme, the aircraft number was retained as the key for referencing

any aircraft. Au additional detail that should be kept in mind when thinking about key

values and the object table is the way in which RFMDS swaps high activity and low-activity

participants. As a flight of high activity participants completes its mission and begins to

depart the range, the slots used by an equal number of low and high-activity participants

are swapped. This swapping permits all aircraft carrying AIS pods to potentially become

high activity participants and have data recorded for their part of the mission. These 'slot

swaps' are immediately preceeded by the transmission of new participant data messages.

Consequently, the aircraft identities are updated in the object table prior to any reference

to the new aircraft numbers and each participant's data is correctly stored.

Weapons are also considered to be objects and the their data is likewise stored in

the object table. The key value is the weapon simulation slot nur-ber that ranges in value

from 1 to 50. Using this number as the key value is a bit more complicated than with

the aircraft numbers because RFMDS reuses weapon simulation slot numbers frequently.

The RFMDS can only perform 50 simultaneous weapon simulations. Each weapon that is

fired acquires the first avaialble RFMDS weapon slot. This slot number is unique among

the 50 simulations but does not uniquely identify a single weapon over the entire length of

the mission. For example the first weapon, an SA-2 missile, launched at an aircraft would

occupy slot I in the RFMDS weapons data message. A weapon launched while the SA-2

is still active, would occupy slot 2. After the SA-2 detonates, slot 1 is made available and

the nexL weapon to be launched would immediately reuse slot 1. The key used for weapons

is 200 + the slot number. In order to uniquely indentify a weapon for the entire exercise

a master weapon identification number is assigned by Readred to each new weapon upon

receipt of a fire signal. This master weapon ID number is stored in the object table and

userl as the weapon's entity number in the DIS PDU. Master weapon numbers are in the

range of 256 to 400. These beginning and ending values are tied to the player numbers in
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Figure 44. Heading and Pitch Determinations from Velocity

the IVC. Weapon numbers are reused if 400 is exceeded. A large range in the weapon ID

number makes it extremely unlikely that two weapons with the same weapon ID number

will be active at the same time.

5.2.2.3 Orientation Determination for Weapons. RFMDS weapon simula-

tion data contains only the location of the weapon and is void of any orientation informa-

tion. It is possible to compute a weapon's heading and pitch from two sequential position

updates. The components of the velocity vector V are determined by:

V X = X_) (4)
(ti- to)

VV (Y_ - y) (5)
(t, - to)

V = (ZI - Zo) (6)

Figure 44 shows an arbitrary velocity vector in a right handed coordinate system.

The projection of V onto the z, y plane forms the projection vector P. The angle 0 between
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the z axis and P corresponds to the rotation of P around the z axis beginning from the

x-axis.

4)= arctan() (7)

The angle 4) is in the range of ±180' and must now be adjusted to represent the

weapon heading in the range of 0 - 3600. Headings correspond to clockwise rotations

about the z axis beginning from the y axis. A common correction factor can be applied

for all quadrants except Quadrant I1, which requires a unique correction.

90 - 4 Quadrants I, III, IV

450 - 4) Quadrant II

The angle 0 formed between the projection vector P and the velocity vector V

corresponds to a rotation about the z axis and represents a weapon's pitch in the range of

±900. No corrections are needed and 0 can be used directly.

0 = arctan (IIV B) (8)

5.2.3 Entity State and Detonation PDU Modifications. Subsection 3.2.3.3 identi-

fies a number of fields in the Entity State and Detonation PDUs that are defined as padding

or unused fields in the v2.0.3 draft standard but which are used by RDT. The need for a

Zulu time stamp has already been addressed; however, three other issues remain: replay

speed, capabilities, and the reason behind a hit or miss for a weapon simulation.

5.2.3.1 Dead Reckoning Record Modification. A companion issue to the

need for a Zulu time stamp is the requirement for a replay capability using the DIS PDUs.

Replay of an exercise is not addressed in the DIS standard but is the key activity upon

which all mission debriefs are based. Immediately upon return from a mission, flights re-

view their individual aircraft video tapes and extract key events. Each of the mission forces

(Blue Air, Red Air, and Blue Air-to Ground) then gathers and conducts a mission review
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using the RFMDS to put the pieces of the puzzle together into an accurate representation

of the unique mission activities. Aircrews use RFMDS variable replay speeds to minimize

the mission review time and to slow down complex engagements so that a complete picture

of the fight is formed. A mass debrief with all participants is the last item on the agenda.

The RFMDS is used once more to replay the mission. Variable replay speeds are used

to skip the non-essential mission elements identified in previous reviews and provide 'stop

action' dissection of the major battles. The RFMDS and its displays are the equivalent of

the television network's instant replays.

An additional 4-byte floating-point data element was placed into the unused portion

of the 120-bit dead reckoning parameter fields of the Entity State PDU at byte offset 4.

This element, the replay speed, is an indicator to other applications that the current PDU is

being broadcast in a replay mode at the speed indicated. Dead reckoning procedures at the

receiving end of the DTC have to modify their algorithms to account for the replay speed

by multiplying their time increments by the replay speed in the PDU. This is necessary

because the velocities in the PDUs remain fixed. Readred sets the replay speed equal to

1.0 for live operations or normal replay, but is also capable of using a simulation-speed

parameter in its time synchronization loop. Applying dead reckoning in a replay mode

within Readred is one of many areas for further research and testing.

5.2.3.2 Capabilities Record Modification. Weapon and range status infor-

mation is encoded within the RFMDS maneuver data message in the weapons, status

and itrace fields. Boolean weapon status bits in the maneuver data message indicate the

following (3:A-71):

1. Radar lockon

2. IR missile lockon

3. IR missile seeker uncaged

4. Aircraft dead

In a traditional DIS exercise, a detonation PDU is broadcast by the weapon entity's sim-

ulation application. It is the responsibility of the target entity's simulation application
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Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MSB I LSB
Filter Filter Laser On IR Aircraft No Slot IR P adar

Predict Unreliable Uncage Dead Lockon Lockon

Table 5. Weapon and Status Byte

to determine the extent of the damage caused by the detonation and report any damage

in the appearance field of the Entity State PDU. The roles of both applications in the

RDT environment are satisfied by the RFMDS. The aircraft dead bit is used to signal a

successful weapon engagement and is therefore placed into the Entity State PDU so that

the IVC can render an appropriate image. The radar and IR bits are passed to the TVC

but are not currently used to modify the rendering of aircraft images.

Filters used to smooth raw data from the AIS pods and also detect anomalies in TIS

tracking report the quality of the telemetry information in two ways. First, a set of status

bits is used to indicate the operating mode of the filters (normal or prediction) and the

reliability of the filtered data. Second, itrace status codes show conditions of filter internal

operation.

These codes indicate a range of operations including: tracking aided by radar al-

timeter, downlink data consistency failure, uplink data faili e, aircraft off range, and

many others (3:A-73). Any abnormal aircraft movements depicted by the IVC can be

cross-checked against the integrity of the data being transmitted for the aircraft. This is

a valuable feature often used to answer questions about apparent misorientation. Table 5

shows how the weapons and status bits are composited into a single status byte.

While the force ID field of the Entity State PDU contains an 8-bit en±umerated value

that can be used to associate a unique color for each of the defined forces, the DIS v2.0.3

draft standard does not define . field which identifies the role of an entity, such as defensive

counter-air, interdiction, air refueling, stand-off jamming, etc. Aircraft role information is

encoded in the RFMDS displays with unique colors. In this manner, aircraft performing

the same role can be readily ideatified because they appear with the same color. The

following roles are encoded into the RDT capabilities record:
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1. AAR - Air to Air Refueling

2. ABCCC - Airborne Communication Command and Control

3. ADF - Air Defense

4. AWAC - Airborne Warning and Control

5. BAI - Battlefield Air Interdiction

6. CAP - Close Air Patrol

7. CAS - Close Air Support

8. CIJ - Close In Jamming

9. CMJ - Communications Jamming

10. DCS - Defensive Counter Air

11. ECM - Electronic Counter Measures

12. HELO - Helicoptor Operations

13. INTR - Interdiction

14. NUC - Nuclear

15. OCA - Offensive Counter Air

16. REC - Reconnasance

17. FAM - Familiarization

18. SAR - Search and Rescue

19. SEAD - Suppression of Enemy Air Defenses

20. SOJ - Standoff Jamming

Table 6 depicts the content and format of the 4-byte RDT capabilities record that

replaces the DIS 32-bit boolean capabilites record.
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Byte 3 Byte 2 Byte 1 Byte'0
MSB II LSB

Itrace Weapon/ Mission Unused
Status Role
Byte

Table 6. RDT Capabilities Record (4 Bytes)

5.2.3.3 Detonation PDU Modification. The Detonation PDU defined in

the draft standard uses an 8-bit enumated type to describe the results of a detonation

but fails to provide a field that can be used to identify the reason a particular weapon

engagement failed. While this data may not be available in the DIS world, it is transmited

in the weapons data messages of the RFMDS simulations. To aid the user in shot analysis,

the miss reason is passed on to the IVC in the detonation PDU. The 16-bit padding field

following the number of articulated parameters at the end of the PDU is filled with the

miss reason.

5.3 Interface and Visualization Component

Now that the hardware configuration has been fully described up to the point of con-

necting the IVC machine to the network, it is time to illustrate this connection in terms

of the overall implementation and also show how data flows through the different software

components. Subsection 5.3.1 contains the two figures that tie all of the components to-

gether into a complete system. a order to provide needed background information for

the class method discussions in subsection 5.3.3, additional information is presented in

subsection 5.3.2 which highlights Performer's multi-processor and shared memory require-

ments. Subsection 5.3.4 addresses specific problems and solutions used within the IVC to

provide more realistic images. The final subsection illustrates the results of the design and

implementation efforts with a set of photos from a typical RDT session.

5.3.1 RDT Hardware and Software Overview. Figure 45 illustrates the complete

RDT system. A comparison with Figure 42 from section 5.2.1 reveals that a single SGI

workstation is added as the platform for the IVC software. The IVC platform requires a
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top-of-the-line graphics engine in order to produce images representing the dynamic aircraft

activities of a Red Flag mission at a rate that provides smooth aircraft movements. (The

desired update rate was 15 frames per second for Z-buffered, flat-shaded polygons.)

Figure 46 provides a similar overview of the RDT but from a ,oftware/data-flow

viewpoint. From an abstract level of observation, the data flow can be viewed as a pipeline.

The live RFMDS data flows into the pipeline at the top of the diagram and flows out the

bottom of the pipe into the IVC component for image generation. Removing the layer

of abstraction uncovers the interplay between data and the software components. Live

RFMDS data is received by the Convert program at the top of the figure. The data is

converted to Ethernet packets and transmitted to the Readred program for translation to

DIS. Readred uses the AFIT DIS daemon to broadcast the DIS PDUs onto a distributed

simulation network. RDTd,,, the IVC component, uses the AFIT DIS daemon to monitor

the network and retrieve DIS PDUs for processing by the Object manager. The Object

Manager supplies player position updates and weapon events to RDTd,i from the object

manager.

The flow of data through the pipeline is somewhat different if a mission is to be

replayed from a data storage device, such as a tape or disk. A magnetic tape containing

the RFMDS message blocks captured by the VAX computer can be converted to a disk

file using resources at AFIT. (A single 47 minute Red Flag mission uses approximately

180 Megabytes of storage.) The rat data file can then be used directly by the Convert

program.

Readred on the other hand expects individual RFMDS messages and cannot directly

process the raw data file. During live broadcast, the Convert program extracts only the

individual RFMDS messages from the blocks and discards the unused data. This same

preprocessing step must be done with the raw data file before Readred can interpret the

data correctly. There are two ways to produce this preprocessed file:

1. Use Convert to store the extracted messages to disk
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Figure 46.f RDT Software Components and the Data Pipeline

2. Use the Xfilter program to process a raw data Mie and produce the required filtered

message file. (See Appendix D for details concerning the operation of the Xfilter

program.)

Either method creates a data file suitable for use by Readred. The data-flow is identical

once the Readred program begins translation.

5.3.2 Performer Shared Memory and Multi-Processing. Visual simulations which

use the SGI Performer software have a "built-in" capability to access multiple processors,

if they are available on the machine, because of the way in which Performer partitions
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the functional stages of its graphics pipeline. The three stages of the graphics pipeline

are the APP, or application stage, the CULL and the DRAW stages. In the APP stage,

the simulation application interacts with other networked stations and propagates the

positions and orientations of its models through the scene. The CULL stage traverses the

visual database of models and determines which polygons are visible in the current view

volume. Selection of appropriate models for level-of-detail switching also occurs in the

CULL stage. The DRAW stage issues the graphic. library commands to the geometry

pipeline in order to produce the image on the display (11:7-13). The work performed

in each of these stages can be distributed between up to three processors. Using three

processors, each allocated to one of the functional stages of the graphics pipeline, provides

the maximum throughput for rendering model geometries.

When Performer operates in the multi-processor mode, each pipeline stage is allotted

a full frame period to perform its work, and it takes two additional frame periods for a

model movement computed in the APP stage to be reflected in the final image produced

by the DRAW stage. This condition is generally not noticeable unless the application

performs its own draw functions in the APP stage onto geometry drawn by Performer in

the DRAW stage. Rapid position changes of the models can highlight this frame late-ncy

and cause unwanted distractions. For example, assume that the application desires to draw

a tail number on an aircraft model in the APP stage. As long as the model position does

not change rapidly from frame to frame, the tail number will appear at the desired location

on the model being drawn in the DRAW stage. However, if the position changes rapidly

from one frame to the next, the tail number may be drawn well ahead of the aircraft. By

keeping a history of the location data for three consecutive frames and using the values

that the DRAW stage will use, the latency problem can be overcome. This technique has

not been incorporated into the current version of the IVC.

Process "callbacks" allow applications to insert their own custom culling and draw

functions into the rendering pipeline. RDTdi, uses the post-draw "callbacks" to draw the

aircraft numbers, flight path trails, and the cockpit HUD into the scene after Performer

has drawn the scene geometry.
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Data needed in multiple stages of the pipeline must reside in shared memory in order

to be visible to the other processes. For example, an aircraft's position that is updated

in the APP stage running on one processor is also needed in the DRAW stage on another

processor so that flight path trails can be drawn. Forms "callbacks" from the user-interface

are made during the DRAW stage. Information which these "callbacks" process to control

the views of the IVC is stored in shared memory so that the APP stage of the application

can have access to the data and modify the view parameters accordingly. Shared memory

and process visibility to common data are crucial concepts in the multi-processor RDTd,,

environment.

5.3.3 Class Method Descriptions. The following subsections detail RDTd,,

specifics by describing the data structures and methods invoked by the RDTd,o Net Man-

ager, Event Manager, Player and User-Interface classes. Other classes derived from the

ObjectSim framework or newly created for RDTd,, have straight forward methods and in-

terfaces and do not require additional explanations beyond those given in sections 4.2.1

and 4.2.2. (In the following descriptions the term "entity" is synonomous with a DIS entity

and "player" is the term used for an entity in the RDTd., environment.)

5.3.3.1 Net Manager. The Net Manager class is the primary interface

between RDT7d,, the Object Manager, and the simulation network. The Object Manager

is a separate process which operates concurrently with RDTd,°. The init method is used

to spawn the Object Manager process. Once created, the Object Manager continuously

reads PDUs from the network, archives entity data, and dead reckons entity positions.

while (TRUE)

update entity information from the network;

dead reckon each active entity;
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During the Object Manager's update procedure the daemons are polled to determine

if new PDUs have arrived. If new PDUs are available, the data is incorporated into the

Object Manager's class structures and arrays. The dead reckoning procedure determines

the time differential between the current time and the previous dead reckoning call and

applies the dead reckoning algorithms to each of the active entity's coordinates. Orientation

dead reckoning is not implemented.

The Net Manager interrupts this continuous update/dead reckon cycle during each

rendering frame with the update method. The update method receives from the Object

Manager the number of active players and their identities and passes to the Object Man-

ager the location of the RDTd,. player array. The Object Manager places the new PDU

information for each entity directly into its corresponding player.

A formal protocol between the Object Manager and Net Manager defines how entities

become active players in RDTdia. The Object Manager changes a player's state from

"deactive" to "inserted" the first time that an Entity State PDU is received for that player.

The Net Manager changes the player state from "inserted" to "active" and inserts a new

model of the required type into the scene at the new player's coordinates. Thereafter, each

update from the Object Manager changes the player's coordinates as a result of either dead

reckoning or a PDU update.

Player coordinates, orientation and velocities received from the Object Manager con-

form to the DIS v2.0.3 standard. The RDTd,o software, much like the RFMDS software,

was written using a simple flat-earth or tangent-plane world coordinate reference model.

A set of utility programs written by Erichsen (4) changes the DIS round-earth coordinates,

orientation, and velocities into the flat-earth frame of reference used by RDTdo and all of

the other ObjectSim applications developed at AFIT during 1993. It is the interaction of

the Net Manager and Object Manager that propagates players through the RDTdio scene.

Active players are removed from the scene by a similar formal protocol. Once the

Object Manager determines that an entity is no longer active, the state of the correspond-

ing player is changed from "active" to "deleted." The Net Manager then removes the

corresponding model from the scene and changes the player's state from "deleted" to "ex-
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isted". The "existed" state is used to differentiate a player that has never been active from

one that has been active and since been deleted.

5.3.3.2 Event Manager. The Event Manager has an interface with the

Object Manager similar to that of the Net Manager. The Event Manager passes to the

Object Manager the location of its event list and receives from the Object Manager the

number of new events that the Object Manager read from the network and placed into the

Event Manager's event list.

Each event is placed into a circular queue. Events can later be retrieved in reverse

chronological order with Event Queue methods. DIS round-earth coordinates and velocities

are also converted to the flat-earth reference frame with the same set of utilities used by

the Net Manager.

Along with each fire and detonation event, the bearing, range, delta altitude and

closing velocity between the launcher/weapon and the target are computed and stored.

The following equations define how this data is computed.

The range between the launcher/weapon located at (x, y, z) and the target located

at (zt, y,zt) is:

Range = /(Xi....X)2 + (vt - ), +(zt...z )2 (9)

The difference between the launcher/weapon altitudes and the target altitudes is

simply the difference in their z coordinates.

Delta Altitude = z- z (10)

The closing velocity between the launcher/weapon at the moment a weapon is fired

or detonated is computed in a three-step process. First, the line-of-sight vector, LOS,

between the two players is calculated and then normalized, nLOS.
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LOS. = Zt-x (11)

LOS, = y,-y (12)

LOSZ = zt - z (13)

nLOS. = LOS, (14)
_ILOS1l

nLOS, = LOSI (15)nLO~y = {LOS11

nLOS, = LOS, (16)
IILOSll

Next, the velocity vector difference, A V, between the launcher/weapon velocity, V,

and target velocity, V', is computed.

LV. = VV, (17)

&v =V v",- vV (18)

AV,= V, - V(19)

Finally, the closure velocity, V,, is the projection of A• V upon nLOS and is in the

direction of LOS.

V. = nLOS-AV (20)

= IInLOSII IIAVlI cos6

= IIL•VII cose

The bearing from the launcher/weapon to the target is computed identically to the

procedure outlined in section 5.2.2.3.
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Figure 47. Player Class with Derivations

In the event that Fire PDUs are transmitted but not received, weapon entities become

RDTdi, players upon receipt of their Entity State PDUs and are propagated along their

flight path by the Net Manager. If no Detonation PDU is received, the weapon player will

continue to be dead reckoned until the Object Manager determines that it is no longer

active and deletes the weapon.

5.3.3.3 Player. RDTdi° players are derived from the ObjectSim player class

through multiple layers of inheritance. Two classes are defined-the RDT Player and the

RDT View Player. Figure 47 shows the derivations for each of these player classes from

the base class, Player. Both classes are Attachable Players but are distinguished from each

other by their data structures and methods.

RDT Player Class. The RDT Player is void of any methods except
those which manage the flight path history information in the player's circular flight path
queue. The RDT player is basically a repository of state information that is used by the
ObjectSim Renderer and the User Interface displays. The RDT Player attributes are:

"* RFMDS Time Stamp

"* Force ED

"• Call Sign

"* Abbreviated Call Sign

111



"* Aircraft Type

" Velocity Vector

"• Angle of Attack

"* Angle of Side Slip

"* Rate of Climb

"* Crab Angle

"• Mach Number

"• Indicated Airspeed

"* True Airspeed

"* G Force

"* Mission Role (Color)

"* Override Color

"* Radar Lock Flag

"• IR Missile Lock Flag

"* IR Missile Uncaged Flag

"* Laser On Flag

"* Number of Radar Missiles Fired

"* Number of Successful Radar Shots

"* Number of IR Missiles Fired

"* Number of Successful IR Missile Shots

"* Number of Gun Shots

"* Number of Successful Gun Shots

"* Number of Times Killed

"• Flight Path History Circular Queue

"* Pointer to the 3D Model

"* RFMDS Data Filter Unreliable Flag

"* RFMDS Data Filter Predict Mode Flag

Attributes that are derived from the base Player class and Attachable Player class

are not shown. One of these attributes, however, is a model pointer. Two instances of the

same model geometry are used for each RDT Player. Both models are inserted into and

removed from the scene at the same time by the Net Manager, but only one model is visible

in a view at a time. View masks are associated with each model so that one model is visible

only in the Plan View and the other model is visible only in the 3D View. By creating
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Element Number Category
0 Bullseye Player

1 - 255 Red Flag Players
256 - 400 Red Flag Weapons
401 - 500 Network Entities

Table 7. RDT Player Array Indices

two separate models, each can be scaled independently. This allows the model rendered

in the Plan View to be one size while the model drawn in the 3D View is another size.

Model scaling is performed by the RDT View Players so that the player's orientation and

location are always visible in the Plan and Centroid Views. This artificiality is necessary

to build a view of the overall range airspace and participants which enhances situational

awareness.

A static array of RDT Players is created during initialization. The first element of

the array, Player 0, is used for the Bullseye player. Elements I - 255 are reserved for Red

Flag players and elements 256 - 400 are reserved for Red Flag munition entities. Elements

401 and beyond are reserved for network players from sources other than Red Flag. Table 7

summarizes these array index assignments. This first implementation is not optimized for

dynamic scaling of the simulation such as drastically increasing the number of entities in

the simulation; however, it does provide a simple and efficient means of randomly accessing

any player received from the network.

RDT View Player Class. Four RDT View Players are defined in

RDTdi,: Plan, Centroid, Cockpit, and Tether. Each RDT View Player encapsulates similar

methods, propagate and draw, which are differentiated by the way a view player's location

is determined or the type of additional information drawn into the scene.

Plan View Player. The Plan View Player is propagated through

the RDTd., scene by changing the x, y, and z coordinates with the control panel interface.

The Plan View player is oriented such that the view is always in the direction of the

negative z axis, or looking down. RDT Player models are scaled so that they are always

visible.
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Cockpit and Tether View Players. Both the Cockpit and Tether

View Players are indirectly propagated by the Net Manager because these players are

attached to one of the active RDT Players. The Tether View player is positioned a fixed

distance behind the RDT Player on an extension of the velocity vector. The Cockpit Player

is positioned a fixed distance forward of the RDT Player's location. Model scaling is not

performed so that the view from the cockpit or tether-!d trail position reflects reality as

much as possible.

Cent roid View Player. The Centroid View Player's position is

dependent upon the number of selected RDT Players, their locations, the view elevation,

and view heading. The default Centroid View Player position for a single RDT Player is a

fixed distance above the player looking in the direction of the negative z-axis. A multi-step

procedure is used to determine the Centroid View Player' position and view orientation

when more than one RDT Player has been selected.
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First, RDTjsa determines a default overhead view position and direction by calculat-

ing a bounding box which encompasses all of the selected RDT Players (also referred to

as centroid players), and the Centroid View Player's final position (zx, y., z.). Figure 48

illustrates a bounding box containing three centroid players. The coordinates (Xi, Yb, Zb),

the center of the bounding box, are defined as:

Xb = (+a. - -"Min+zMi. (21)

2
yb -" (Yma - Yu*) + yutn (22)

2

Zb = ZM. - ZMiU) + ZMn (23)
2

The maximum separation that can exist between any of the centroid players is less

than or equal to the distance between opposite comers of the bounding box. This maximum

separation distance, DM.,, can be used to determine a position above (Xb, Yb, Zb) so that the

viewing volume contains all of the centroid players. The distance from zM. 2 to (XC, Yc, zO)

is defined as DR.

DR = Ratiopov* AspectScale* (DMa) (24)

Ratiopov = cos(FOV) (25)
sin(FOV)

Ratiopov is a scale factor which is used increase/decrease DR depending upon the

field of view. If a large field of view is used, say 197C, DR can be decreased so that the

view position is closer to the centroid players than if a smaller field of view, 90*, is used.

AspectScale is an additional multiplier which not only increases DR so that the

centroid players do not appear on the very edge of the viewing volume, but also adjusts

for the rectangular aspect ratios of most monitors. AspectScale was experimentally de-

rived and varies dependent upon the largest of two ranges-zmi, to xm,, or YMn to YMaz.

AspectScale is largest when the yM,,i to YMz range is the greatest.
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Figure 49. Default Centroid View Player Position with Multiple RDT Players

The default Centroid View Player's view orientation is in the direction of the negative

z-axis and the position, shown in Figure 49, is defined as:

(2c,ijc)zc) =(Xbi1bizMaz+DR) (26)

Once the default position is found, the position and view direction can be modified

to conform to the heading and elevation inputs from the user-interface control panel. A

horizontal slider on the control panel is used to select the view heading. If the slider value is

090 then the view direction should be oriented so that the Centroid View Player's heading

is 0900, or looking East. Similarly, a vertical slider on the control panel is used to select

the view elevation. The elevation may range from 900, overhead view, to 0*, side view, as

depicted in Figure 50.

By controlling the Centroid View Player's elevation and heading with the control

panel inputs, (XC, YC, ZC) is moved over the surface of a hemisphere located at (Xb, 1/b, Zb)
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with radius, Radiusliemiph,e. The view direction is from (x,, y.,, z,) towards (Mb, Yb, Zb).

RadiUSnemisphcre = DR+(zM•-zX 2 ZMin (27)

To determine x,, y,, and z,, reference the top and side views of Figure 50. The

heading input from the control panel, 0, must first be converted from a negative rotation

beginning at the positive y-axis about the z-axis to a positive rotation beginning from the

positive x-axis about the z-axis. In addition, (XC, Ye) needs to be positioned such that the

final view direction corresponds to the control panel input. Let a be the desired angle.

a = 270- i (28)

The radius, r, of the spherical segment at height z, of the modified view position is

defined as:

r = Radiusfemi.phcre * cos(G) (29)

where 0 is the elevation angle from the control panel input. (xc, y,, z,) can now be calcu-

lated.

X, = Xb+rcoso (30)

y, = yb+rsina (31)

z = Zb + Radiusuemiophr. sin 0 (32)

5.3.3.4 User Interface. Although the user interface class in the object dia-

gram of Chapter IV indicates a single class, the RDTd,° user interface is a conglomeration

of "C" functions managed by the "C++" User Interface class. All user interface functions

required within the RDTd,, application reference this class and its methods to perform

their required tasks. Figure 51 illustrates the numerous source code files which comprise

the user interface.
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Item LOC IPercentI
Forms 7,979 29.8
Call backs 4,460 16.8
Configuration Files 1,300 4.8
Visualization 12,298 48.6

Total 126,737J 100

Table 8. RDT Souce Lines-of-Code Breakdown

One of the features of the RDTd., application and its interface that distinguishes it

from other DIS stealth viewers is its ability to present low level data that can be used

for detailed mission analysis. Stealth viewers allow a user to move through a simulation

environment without interacting with any of the simulation players. Each of the graphical

views available in RDTd1 . could easily be found in one form or another in a stealth viewer

application; however, the large volume of data passed from RFMDS to RDTdi. provides

a level of detail unavailable in the majority of the DIS stealth viewer applications. It is

precisely this characteristic which makes RDTi,. a viable tool for mission monitoring and

debriefing.

The user interface comprises 46.6% of the more than 26,000 lines of code in the

RDTdi. software. Table 8 illustrates the breakdown of the RDTdi. software in terms of

lines-of-code (LOC). Considering only the user interface software, 64% was automatically

generated by the Forms Designer. Only the semantic action procedures or "callbacks"

needed to be coded "by hand." The high percentage of code that was machine generated

speaks highly of the sophistication and flexibility of the Forms Designer software and its

suitability for interface design and implementation.

5.3.4 Image Problem Resolution. Implementation of the IVC design on the Sil-

icon Graphics machines was not a problem-free task. Early attempts to use elevation

shading with the digital ten ain data resulted in a terrain image that conveyed less infor-

mation than the original R1FMDS line drawings. This subsection details how a suitable

texture map was created to alleviate this problem and also identifies one of the z-buffer vi-
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Figure 52. Early Elevation Shaded Red Flag Terrain

sualization artifacts that significantly detracted from the overall presentation and describes

how this problem was resolved.

5.3.4.1 Terrain Tezturr Mapping. The photo in Figure 52 shows an early

implementation of the digitized Red Flag terrain. Each square is composed of two trian-

gles of slightly varying shades that are colored according the the elevation of the terrain

represented by the triangles. Darker colors correspond to higher ter-rain, It is apparent

fromn the cockpit view in the figure that the aircraft is approaching higher terrain, but

the exact boundary between mountain and valley is unclear and does not refltict reality,

The Plan View in the figure also shows the major features of the terrain, mountains and

lowlands, but is void of any tangible details that truly coincide with the real terrain. Both

views are unsuitable for use in a mission mnonitoring/debriefinxg tool where pilots navigate

using terrain features and fly low to the ground. It would be difficult to credibly warn a

pilot of an approaching hill or obstruction using the images depicted in the figure.
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One of the driving forces in computer graphics image generators is the number of

polygons in the scene which must be rendered. Clearly, a large number of polygons requires

more time to render than a few simple polygons. The Red Flag terrain used in RDTd,,

covers an area approximately 143 nautical miles wide by 120 nautical miles high. The

number of polygons which would be needed to accurately represent this terrain would

severly limit the number of images which could be rendered in a given amount of time.

Slow frame rates translate to jerky, unresponsive simalations which only increase user

dissatisfaction.

Texture mapping techniques exist which "paste" two dimensional texture patterns

onto the polygons used in the scene. This provides a way to place a significant amount of

additional information into the scene with fewer polygons. For example, a single polygon

with a texture map taken from a detailed aeronautical chart could easily meet all of the

needs of the Plan View in RDTd,,. The processing cost to render the single, texture-mapped

polygon would be minor compared to a terrain data base composed of a million polygons,

as long as the hardware was optimized for texture mapping. Silicion Graphics advertizes

the new Reality Engine2 Onyx computers with the capability to draw 320 million textured,

anti-aliased pixels per second. These graphics super-computers, available at AFIT, provide

the needed image generation speed to use texture mapping techniques to reduce polygonal

complexity in the terrain data base and increase the amount of information available to a

viewer.

Compare the photo of Figure 52 with any of the photos in section 5.3.5. Clearly

visible is the marked difference between the early elevation shaded polygons and the texture

mapped polygons in the final implementation. The 12 texture mapped polygons used in

the lowest level of detail in the Plan View clearly shows sharply defined terrain features

and offers the minimum polygonal scene complexity. These improvements yield the fastest

image generation rate.

In order to create the texture maps used in RDTdi., a high fidelty geometric model of

each of the six 1* latitude by 10 longitude cells of the Nellis ranges was created. A desert

color scheme for the model were chosen to correspond to ranges in elevation much the

same way that the early terrain was shaded. MultiGen software from Software Systems,
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Inc. was used to render the elevation shaded geometry. A screen capture utility was used

to generate an image of the high fidelty terrain. Evident in the image were the fine shaded

triangles of the geometric model. To remove this artificiality, the snapshot image was

blurred. The blurred image was then mapped to the polygons of the terrain to create a

view into the simulation which accurately reflects the features found on the Nellis ranges.

5.3.4.2 Image Flicker. A hardware visible-surface determination technique

called z-buffering is used in the Silicon Graphics machines to render realistic 3D images.

This techique provides a simple and efficient method for determining which polygons, or

portions thereof, are visible in a scene. A z-buffer with the same number of entries as

the frame buffer is used to store the current depth, or z coordinate value, of each pixel.

As new polygons are scan converted into the frame buffer, the depth value of each pixel

is compared to the current depth value in the z-buffer. If the value is greater than the

z-buffer value, the pixel is ignored. This situation occurs when the pixel in the current

scan-converted polygon is farther from the view point than a previous pixel. If the depth

value of the new pixel is less than the z-buffer depth value, then the new pixel must be in

front of previous pixels and the depth and color information of the new pixel replaces the

frame and z-buffer contents (5:668).

As the distance from the the viewpoint to overlapping polygons increases, the rel-

ative distance between the overlapping polygons grows smaller and smaller. Eventually,

depth comparisons between the pixels of the overlapping polygons may be difficult, if not

impossible, to distinguish because of the fixed numerical precision of the computer hard-

ware/software. This difficulty manifests itself in the computer image as flickering. Pixels

from first one of the overlapping polygons, and then others, randomly occupy the pixel

locations in the frame buffer. In RDTd,o, aircraft which were flying near the surface of the

earth often had random parts of their geometry replaced by terrain shaded pixels making

it difficult to determine an aircraft's orientation.

In order to resolve this problem, the z-buffering techniques were disabled during the

rendering of the Plan and Centroid Views. Although this may produce an image where
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Figure 53. Initial Configuration Options

one aircraft incorrectly obscures another in the scene, the benefits derived from disabling

z-buffering far outweigh a per:,u)ic error in the image.

The Cockpit and Tether views keep the z-buffering enabled so that they always depict

an acccurate scene. In these two views, the flickering problem is less pronounced because

the distance from the view point to any of the players is relatively small compared to the

e-xtreme distances seen in ti"e Plan View.

5.3.5 IVC Photos. The following pages contain photos from a session with

RDTd%,. The photo sequence illustrates the major capabilities of RDT.,, and the final

form of the user interface. The next chapter presents issues related to RDT performance

znd compares the capabilities of RDTi,, with those of R.FMDS.
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Figure 54. Simultaneous 3D and Plan Views

Figure 55. RDT Terrain with Texture Maps



Figure 56. Expanded Cockpit View
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Figure 57., Expanded Tether View with Help Window
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Figure 58. Full Screen Tether View
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Figure 59. Expanded Centroid View with Bullseve and Pair Data
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Figure 60. Flight Data

Figure 61. Engineering Data
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Figure 62. Exercise Data

Figure 63. Summary Data
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Figure 64. Pair Data
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VI. RDT Performance

For each task there are numerous "yardsticks" by which the success of that task can

be measured. For RDT, the ultimate measure of its success would be the incorporation

of the software and hardware into an operational environment where it would be used as

the debriefing tool it was designed to be. Other "yardsticks," or metrics, exist however,

which can also lend in',ight into how well the software could be expected to perform in

that operational world. This chapter measures RDT performance in three areas: data

translation, visualization, and user task completion.

6.1 Data Translation

In order to establish the context under which data translation performance tests

were completed, some background information is required. This section first describes the

contents of the data file that was used for Data Translation Component (DTC) evaluation

and then explores the issues of dead reckoning and speed for both single and multi-processor

machines.

6.1.1 Red Flag Mission Description. The Red Flag exercise data used for DTC

testing was recorded during the morning mission on 15 Jul 93. A total of 53 aircraft

participated during the mission, and of that total 7 different aircraft types were represented.

The numbers and types for the mission are listed in Table 9.

Aircraft Type Number
F-4 2
F-15 16
F-16 27
B-52 2
C-130 2
KC-135 3
E-3A I 1I
Total 1 53

Table 9. Aircraft Used in a Typical Red Flag Mission
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Not included in the table are the numbera and types of simulated weapons which

were fired at the Red Flag participants. Approximately 125 weapons entities were inserted

and removed from the exercise as a result of fire and detonation events generated by the

RFMDS CCS.

Missions flown during Red Flag exercises have many elements in common and include

the following phases:

1. Air Refueling/Marshalling - Aircraft join up with their designated tankers to top of

their fuels tanks and assemble the strike formations.

2. Push - Arrive at the start route point in the strike formation. Aircraft are armed

and ready for combat.

3. Low Level Ingress - The strike formation, or package, uses the terrain to avoid

detection by enemy air defenses.

4. Aerial engagement - Enemy air forces detect and engage the strike package in air-

to-air combat.

5. Air-to-Ground Weapon Employment-Strike package locates their assigned targets

and commence weapon deliveries.

6. Defensive Maneuvering-Enemy positions engage strike aircraft forcing the strikers to

perform defensive maneuvers to stay alive.

7. Low Level Egress-Individual flights of strike aircraft return to friendly territory.

8. Return to Base-Post strike refueling if required and cruise back to base.

To help visualize the maneuvering that occurs in one or more of these phases, examine

the air-combat engagement profile in Figure 65. This graph represents the flight path of

an F-16 as is progressed from a patrol/search phase in Segments AB to the commit phase

in Segment C and finally through the engagement phases of Segments D,E. Maximum

performance maneuvering most likely occurred in Segment E.

The mission flown on 15 July included all of these phases and is therefore repre-

sentative of typical Red Flag missions. The 15 July data includes not only the cruise,
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Figure 65. Air Combat Maneuvering Engagement Profile

or non-maneuvering, portions of the mission but also the air-combat and defensive ma-

neuvering which tests a pilot's ability to maneuver his aircraft at the edge of its defined

operating envelope. This broad range of maneuvering provides an excellent source from

which assertions about the effectiveness of dead reckoning algorithms can be validated. Be-

fore exam'ning the processing cost savings achievable with dead reckoning, the following

section quantifies the information contained within the 15 July data file.

6.1.2 Data Description. The raw data file, converted from magnetic tape, con-

talzs 184 Megabytes(Mb) of information. About 30% of that file contained unused data

and was trimmed down by the XFilter program to 123Mb. The total duration of the

recorded data spans 2679 seconds, or 44 minutes and 39 seconds. The 123Mb of filtered

data contained 25,775 RPFMDS message blocks which must be parsed and translated by

Readred. The breakdown by message type is shown in Table 10. The asterisked items in

the table do not reflect the number of individual RFMDS messages in the file but rather

the number of DIS PDUs that are generated as a result of parsing the contents of the

respective messages. (The maximum number of i1 divica1 al messages that can be contained
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Message Block Type (Name Number]

0 Unknown 8
1 Mission Data 11
2 GCO Mission Data 10
3 Maneuver Data -788,452
4 Range Time 25,775
6 High-Activity Participant 9
7 GCI Data 25,564
8 Threat Mission Data 10

13 Range Status 25,753
15 Weapons Data -8,730
16 Bomb Data 4
"18 UHF Radio Frequency 8
20 Threat Data 25,563
21 Low-Activity Aircraft Data 1,558
22 Low-Activity Participant Data 11
23 Zone Entry/Exit 154
24 Bomb Target Data 9
29 Target Status 25,754

Table 10. Numbers of Individual RFMDS Messages within the 15 Jul Data

within the file for any single message type may not exceed 25,775 because only 25,775

message blocks were transmitted)

6.1.3 Dead Reckoning Cost Savings. The benefits of dead reckoning can best be

seen from the data in Table 11. This table itemizes the number of Entity State, Fire and

Detonation PDUs that ax- generated by Readred as it translated the 15 July data. The

first column shows the number of PDUs sent when the position dead reckoning threshold

is set to 1.0 meter. Column two is categorized similarly except that the dead reckoning

threshold is set to 10.0 meters. This is the normal threshold used by Readred. Column

three reports the numbers of PDUs transmitted when dead reckoning is disabled and forms

the baseline for comparing the numbers of PDUs sent with and without dead reckoning

algorithms.

The network message traffic reductions provided by the dead reckoning algorithms

of the DIS standard are dramatic! By using a nominal 10 meter threshold and the 5
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Type 1 meter 10 meter No Dead Reckoning
Threshold Threshold

ES PDUs Tfransmitted 177,277 44,919 788,452
Weapons PDUs Transmitted 6,801 1,677 8,730
ES PDUs Suppressed 613,127 753,730 0
Total PDUs 797,205 800,326 797,182

% Traffic Reduction 76.9% 94.2% 0%]
[ve PDUs/sec 68 17 297

Table 11. Network Traffic Reductions with Dead Reckoning

second update rule imposed by the DIS draft standard, more than 94% of the PDUs that

potentially would have been generated without the dead reckoning algorithms in place can

be discarded. The narrower 1 meter threshold causes more PDUs to be transmitted but

still allo', s 76.9% of the potential PDUs to be discarded. These findings are similar to

those reported by Harvey(7:128).

The average number of PDUs broadcast per second shown in the last row of the

table is a rough measure of the network broadcast capabilities required to transmit the

total number of PDUs over the entire exercise time period. Naturally, some mission phases

will exhibit higher PDU transmission rates than others and so the average rates in the table

may be exceeded by a considerable margin.

Figure 66 shows a comparison between the flight path of the F-16 aircraft in Segment

B described previously and the positions predicted by the dead reckoning algorithms. The

dashed line represents the dead reckoned position of the aircraft and the periodic flight

path corrections required when the time or position thresholds were exceeded. From a

distance, the difference between the two flight paths is negligible, but examination of the

dead reckoned flight path reveals a jagged, unrealistic path that could never be flown.

Because of the periodic corrections required by the DIS standard, the dead reckoned flight

path represents a suitable approximation for most applications. More restrictive thresholds

produce closer approximations to the real flight path and fewer observable maneuvering

irregularities but also incur additional network traffic penalties. These tradeoffs must be

weighed for each DIS application.
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Figure 66. Dead Reckoning vs Actual Flight Data

6.1.4 Single vs Multi-Processor Machine. This subsection explores the processing

capabilities of several single and multi-processor machines in the AFIT graphics lab to

translate and broadcast the data in the 15 Jul data file. The small sample sizes of the test

data gathered for Table 12 restrict the number of credible conclusions which can be drawn

about processor capabilities. This data is included only as an initial indication of relative

performance. External network traffic, operating system process context switching, and

other background processing are all factors which could not be controlled during the test

period.

TyeCPU # ofT DR[IDR Turbo Turbo 1Turbo

I (Mhz) Processors (1) (10) . (1) (10) (NoDR)
Indigo 33 1 469 918

IndigoEX 100 1 2,979 2,683 705 288 3,236
510/VGXT 50 1 2,985 3,152 815 274 3,164

440/VGXT 40 4 3,041 2,934 1,242 554 3,382
Onyx RE 2  100 4 2,682 2,681 961 332 4,482

Table 12. Relative Processor Performance
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Columns 1,2,and 3 of Table 12 identify the SGI machines used for the test and a

few of their characteristics. The columns labeled "DR" indicate that the dead reckoning

algorithms were used during the translation process. The numbers in parentheses reflect

the dead reckoning threshold, in meters, used for a given set of test runs. The label

"Turbo" in columns 6, 7, and 8 means that the normal time synchronization mechanism

used in Readred was disabled and that the program was allowed to translate and transmit

the PDUs as fast as possible. If the dead reckoning algorithms are not used and the time

synchronization mechanism is disabled, Readred generates a PDU for all participants every

100msec. In the case of the 15 July data, this equates to almost 800,000 PDUs.

What do the test results indicate? First, single processor machines, executing the

same code as the multi-processor machines, can compete favorably with the multi-processor

machines. In turbo mode, the Indigo EX consistently out performed the multi-processor

machines and was comparable in the normal dead reckoning mode. Second, further refine-

ment of the time synchronization mechanism is required in order to bring the replay time

in line with the real elapsed time of 2679 seconds. In nearly all of the DR mode test cases,

Readred's elapsed time exceeded the RFMDS elapsed time. Third, an uncontrolled test

environment, such as the environment in which these performance gauges were conducted,

can significantly skew results. Many entries in the table point to apparent, counter-intuitive

irregularities. For example, how can thr Indigo, a 33 Mhz machine, in turbo mode at the

1m threshold process the data faster than the 100 Mhz, 4 processor, Onyx, or why would

the Onyx process data significantly slower than any of the other test machines when every

PDU is being broadcast? Further testing in a controlled test environment is necessary

before any other conclusions can be drawn.

(After the data was compiled for fable 12, a new version of the network daemons

was installed and tested at AFIT. The preliminary results indicate that the transmission

speeds can be increased by a factor of four. The 440/VGXT translated and broadcast

the 15 July data in the turbo, no-dead-reckoning mode in a time of 799 seconds. This is a

drastic improvement over the previous capabilities with the old network daemons. In the

normal time synchronization mode the completion time was comparable to other results,

2825 seconds. The turbo (10) mode completion time for the 440/VGXT was 218 seconds.

137



These improved transmission capabilities allow file-based mission replay using Readred at

speeds up to 12 times actual speed.)

Network reliability is another issue that bears mentioning. Quantitative data is not

available from RDT to show how many PDUs are transmitted by Readred and not received

by RDTd,, but the situation does occur. This problem is an inherent characteristic of

the underlying philosophy of DIS and its reliance upon the UDP/IP protocols where data

receipt is not guaranteed. Under normal conditions with aircraft maneuvering through the

exercise airspace, loss of a few Entity State PDUs is not even noticeable. However, when

weapon events are added to the complexity of the simulation, the loss of a single detonation

PDU is very noticeable. Instead of the weapon detonating at the required location, the

weapon's location continues to be dead reckoned for an additional 12 seconds and the

detonation results are not available. If a Fire PDU is not received by RDTd,,, the weapon

is correctly propagated through the scene by the Entity State PDUs that are broadcast. but

the shot cannot be validated because the range, bearing, and closing velocity calculations

are not performed. This detracts from RDT's usefulness as a debriefing tool. Repeated

demonstrations with the 15 July data file indicate that roughly one to five percent of the

Fire and Detonation PDUs are lost. It is currently not possible to determine the number

of Entity State PDUs which may be lost because of network difficulties.

6.2 Visualization

A performance measure that has often been used to compare relative processor ca-

pabilities is the number of frames per second that the graphics engine can generate. This

measure can only be used for machine comparisons if the geometry, shading, and lighting

conditions are the identical on each computer. If identical conditions cannot be duplicated

the frame rate comparison must be discounted. This section details the polygonal com-

plexity incorporated into the Red Flag terrain model in an effort to provide some context

for the frame rate performance statistics given later.

6.2.1 Red Flag Terrain Complexity. The Red Flag terrain used in RDTd, is

constructed with four levels-of-detail. At the lowest level-of-detail, each of the six 10
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Figure 67. Red Flag Terrain Geometry
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Level # of Polygons
Lowest 48
Low 432
High 4800
Highest 43,200

Table 13. Polygonal Complexity in Red Flag Terrain

latitude x 10 longitude cells is divided into four equal subcells, each containing two triangles.

This gives a total of 8 polygons per cell and 48 polygons for all 6 cells. Figure 67 shows

how each of the subcells is further subdivided at the next higher level-of-detail into 18

triangles. A further subdivision of the subcell creates a level-of-detail that contains 200

polygons and at the highest level-of-detail the total number of polygons for each subcell

is 1800. Table 13 gives the total number of polygons contained at each level-of-detail for

the Red Flag terrain. The subdivision of each of the cells into four separate subcells was

done to allow the Performer software an opportunity to cull, or clip, pieces of geometry

from the scene and to provide finer control for the level-of-detail switching. Level-of-detail

switching and culling reduce the total number of polygons visible in the scene at any one

time and directly contribute to higher frame rates.

6.2.2 IVC Frame Rates. Without the ability to poll the Performer software for

the number of polygons drawn in a single frame, it is extremely difficult to determine the

polygonal scene complexity and make rigorous frame rate comparisons. The frame rate

statistics provided in Table 14 are therefore presented in order to lay an intuitive foundation

for achievable frame rates on the SGI machines for RDTdi,. The statistics, taken from the

output of the pfDrawChanStats procedure, were averaged over an extended period of time

and reflect the following general conditions:

1. Approximately 42 aircraft models

2. An average of 6 weapon models

3. Red Flag terrain with four texture-mapped levels-of-detail and multiple cells visible
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Machine Performer Normal Expanded Full Screen
Type Version (2 Chan) (1 Chan) (1 Chan)

440/VGXT 1.1 3-6 4-7 3-6
Onyx RE2  1.1 10-15 15-20 10-15
Onyx RE2  1.2 12-20 15-30 15-20

Table 14. Frame Rate Performance

Included within the frame rate statistics are a number of other graphics activities..

These include the labeling of each aircraft with a number or call sign, drawing an optional

flight-path history trail, drawing the HUD with a stroked font library, managing Forms

window events, and updating the Forms based data views. These additional activities can

reduce overall frame rates anywhere from 2-4 frames per second. The low frame rates shown

for the 440/VGXT are principally a result of the texture mapping used for the terrain.

Other tests conducted on the 440/VGXT without texture mapped terrain generally yielded

frame rates that were only 2-4 frames per second slower than the Onyx RE2 machines using

Performer 1.1. The optimum configuration at AFIT for RDTdi, is the four-processor Onyx

RE'2 workstation running Performerversion 1.2. This configuration meets and exceeds the

desired frame rates for the RDT.

6.3 User Evaluation

To determine RDT's suitability for performing mission monitoring and debriefing

tasks the interface requirements defined in section 4.1.1 can be used as a partial measure

of merit. Captain Jim Raulerson, an experienced mission analyst from the 57TG, was

asked to become acquainted with the RDTdi, interface and then use RDTd,, to evaluate

the performance of aircrews participating in the 15 July mission. At the end of the training

and e'valuation period the analyst was asked to subjectively rate RDTd,,s capabilities in

comparison to R.FMDS and to mission needs. Table 15 gives the results of that evaluation.

Additional capabilities, not included in section 4.1.1, surfaced during the evaluation and are

included in the table as well. Two things must be kept in mind, however, when examining

the table-the scope of the RDT project was very limited compared to the full capabilities

of RFMDS and the design of an equivalent system was never intended. The goal of RDT
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was to demonstrate the feasibility of developing a remote debriefing tool that used the DIS

protocol.

Column one of Table 15 identifies a list of specific capabilities that are possible on

one or both of the systems. Check marks in column two indicate which capabilities can

be found on RFMDS. A similar mark in column three indicates the capabilities included

in RDTdi°. When both systems include a capability and one system offers a significantly

higher capacity a 'Vf+ symbol is used.

Examination of the table reveals that there are significant capabilities which RFMDS

possesses that still need to be incorporated into RDT. The two most important capabilities

are communications and replay. The ability to monitor the radio communications is crucial

in evaluating the situational awareness of the aircrews, flight coordination, and weapon

employment. (This last area is particularly vital because some aircraft do not send fire

control data to the RFMDS and thus no weapon simulations are computed. In addition,

the voice shot calls can serve as an alternate source of weapon fire events.) A variable-

speed replay capability is the backbone of the debriefs which follow the mission. RDT's

li!nited replay capability available by recording the mission data with Convert and then

using the data file with Readred provides a mission replay capability, but does not allow

the mission to be paused or the replay speed to interactively be changed.

RDT's strengths include realistic aircraft and terrain representations, extensive ca-

pabilities to modify view orientations with both spaceball and mouse, simple user interface,

analysis data, and most importantly, DIS compatibility.

A table of capabilities, like Table 15, provides some useful insight in determining

RDT•,s adequacy for debriefing a live mission. But the important question which must

be answered is 'can RDTd, provide the same analysis capabilities that RFMDS provides

for live air-combat-maneuvering?' The answer from Capt Raulerson was a resounding

"yes."
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Item RFMDS RDT#,]

Plan View with Pan/Zoom Capability N /
Centroid View + Orientation modifier V v
Pilot View + Orientation Modifier V/
Tether View + Orientation Modifier _/

Ground Threat View / /
Flight Data Display V V
Engineering Data Display V V
Exercise Data Display V V
Weapon Summary Data Display 7 V
Archive Summary Data N V
Summary Data Reports
Simultaneous Data, Plan and 3D Views V V
Aircraft Pairing Information V V
Radar and IR Missile Lock hidications v_ V
Aircraft Flight Path History Trails V I V
Hard Copy Printouts V _

Radar and IR Missile Seeker Position
Symbols in Pilot View V
Restricted Airspace Depiction V V
Modify Aircraft Color N/ N/
Monitor 8 Radio Channels V
Variable Speed/Pause Replay V
Weapon Employment from Console V
Air-to-Ground Weapon Scoring V
Threat Operator Video V _

Geographic Bullseye Reference Point N/
Aircraft Pairing with Bullseye Point V
Realistic, 3D Filled Polygon Models V
Elevation Shaded Solid Terrain _ _

Add Models for Threats and Targets
Aircraft Locator
Detach and Fly through Scene _V

Establish Viewpoint from ANY position V
Weapon Detonation Animation Effects V
Portable V
DIS Compatible I/
View DIS Entities from other Sites •
Broadcast DIS data to unlimited # of Sites _/

DIS Simulator Interaction with Live Aircraft V

Table 15. RFMDS/RDTd,. Capabilities Comparison
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VII. Conclusions and Recommendations

This chapter sunmarizes the success of the RDT as measured against the original

thesis statement given in Chapter I and then makes recommendations for future effort and

research. The concluding portion of this chapter reports on capabilities, derived from this

thesis effort, which if further developed may significantly improve the training of today's

aviators and better prepare them to meet the challenges of the future.

7.1 Thesis Statement Revisited

The original thesis statement, or goal, can be subdivided into a number of supporting

object~ves. RDT can be evaluated against each of these supporting objectives to determine

the overall success of the thesis project.

Oajective number one was the development of a hardware and software system which

proved the feasibility of a DIS-based Red Flag mission monitoring and debriefing tool.

Successful achievement of this objective was demonstrated during on-site testing at Nellis

AFB. By simultaneously ulisg one of the RFMDS DDS consoles and RD T, the images of

both systems were projected onto two large viewing panels in one of the debriefing rooms

at Red Flag. Both panels showed the live activities of a two-ship as it conducted test

flights on the Nellis ranges. The source for the image on one panel was RFMDS and the

source for the other image was RDT. Comparison of the images on the two panels showed

icentical aircraft movements by both systems. Flight maneuvering in the RFMDS panel

was mirrored in the RDT panel. As the flight crossed one of the terrain features drawn by

RFMDS, RDT depicted an identical movement over the same terrain feature. The ability

to monitor live aircraft on the Nellis ranges using RD T is now a reality.

Objective number two specified an ability to transmit the aircraft telemetry to remote

sites. This capability was also simulated during the on-site test at Nellis by transmitting

the DIS PDUs over a fiber optic cable from the Data Translation Component (DTC)

in room 116 to the Interface and Visualization Component (IVC) located in room 234.

Although the distance is likely under 150ft, it demonstrated the capability for the DIS

data to be transmitted and successfully received using long distance mediums. The set
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of fiber modems could just as easily have been an equivalent set of hardware that could

convert the Ethernet protocols to those used with T-1 lines or other long distance networks.

Preparations are underway for a final demonstration of RD T's capabilities to transmit

and receive DIS data over long distance networks. During this demonstration, Nellis, AFIT

and the ARPA Simulation Center will be connected on a wide area network. Live Red

Flag mission data will be broadcast to AFIT and ARPA. Both sites will monitor the live

exercise by using RDT. In addition, the Virtual Cockpit simulator at AFIT will receive

the DIS data and be able to "fly in the exercise." The Virtual Cockpit will have complete

visiblity of all of the Red Flag aircraft and will be able to acquire the aircraft not only

visually but also on its simulated radar, perhaps even employ weapons. Activities of the

Virtual Cockpit will be seen at both ARPA and Nellis on RDT. This will be the beginning

of simulator interaction with live aircraft.

Objective number three required an interactive interface to a state-of-the-art three-

dimensional image generator. The Forms software contributed the tools necessary to create

a graphical user interface which incorporated many of the same capabilities for view se-

lection and control that exist on the RFMDS DDS consoles. The Silicon Graphics Onyx

machines with their Reality Engines formed the backbone of RDTd,. and were directly

responsible for the system's excellent frame rates. User evaluations confirmed equivalent

capabilities for live monitoring of Red Flag missions.

The final objective stated that RDT be constructed with off-the-shelf network com-

munications hardware and thesis software. All hardware used for the RDTimplementation

was purchased directly from commercial vendors and required no further modifications.

Thesis software was tailored to the hardware components to create a complete system

which fulfifled all of the objectives of this thesis project.

7.2 Future Work

The future appears bright for the world of distributed simulation. Among the top

seven priorities that ARPA has chosen for future military technological research is the field

of distributed simulation. DIS compatible applications, such as RDT, will benefit from the
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additional resources and efforts dedicated to distributed simulation environments. In the

near term, a significant effort still remains to improve and extend the capabilities of RDT.

The following list suggests a few of the areas where additional research is warranted.

1. Communications - The DIS standard can be employed to transmit and receive digi-

tized voice data. Hardware and software packages exist on the market today which

might be adapted for use with RDT. The ability to monitor radio communications

would be a significant step forward for the remote debriefing concept.

2. Mission Replay - Additional effort should be dedicated to the development of a DIS

data logger. The logger would function not only in a record mode, but also would

be used to replay a mission, at variable speeds, from stored DIS PDUs. One of the

challenges to be overcome here is the coordination with the Object Manager so that

appropriate dead reckoning positions are calculated for the variable replay speeds.

3. Orientation Dead Reckoning - Smoother aircraft rotations about its three primary

axes can be achieved by incorporating orientation dead reckoning into both Readred

and the Object Manager. This will create a higher fidelity simulation and cause fewer

distractions for the user.

4. Reengineering - Improve the current software architecture so that it can dynam-

ically grow to meet the challenges of thousands of DIS entities interacting over a

common network. The current limit is 500 players. This capacity has already been

exceeded. Effort could also be expended to improve the user interface and possibly

even incorporate voice technology to control RDTd,, functions.

5. Air-to-Ground Capabilities - Expand the current scope of RDT from air-to-air to

include air-to-ground. This involves the addition of target entities onto the terrain

and a means for target scoring. Data is already available within the RFMDS mes-

sage blocks that identifies the location of bombs at the point of impact. Additional

animation effects can also be incorporated to add a sense of realism.

6. Reports - No hard copy printouts are currently available with RDT. A capability

to generate printouts of the aircraft flight paths during a mission would serve as a

useful tool for debriefing. Weapon summary reports should also be included.
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7. HUD Symbology - Develop a suitable method that can be used to provide IR missile

seeker and radar target designator symbology onto the cockpit view's HUD. This is

not a trivial matter. The azimuth and elevation angles for both the radar and the

IR missiles is given in every maneuver data message. There is no mapping of these

angles directly into any of the DIS PDUs. The articulated parts fields of the Entity

State PDU have been considered; however, the use of dead reckoning algorithms to

suppress the number of PDUs being broadcast complicates this issue. How do you

dead reckon the position of the changing HUD symbology between PDU updates?

Additional work that might be done in conjunction with efforts involving the Virtual

Cockpit would be converting the generic HUD now used by RDTd,, to the new Air

Force standard HUD symbology design.

8. Implement New DIS PDUs - Many of the engineering and flight data views contain

fields that are currently not being filled because the data is not available in the DIS

PDU. This difficulty can be overcome by implementing an RDT PDU that would

contain such items as Indicated Airspeed, Mach Number, Augle of side slip, Crab

Angle. A new question arises, however, "how often should these PDUs be sent and

what effect will they have on the overall network traffic?"

9. Evaluate Secure Network Communications - What impact will there be on the system

if the data is encrypted and decrypted. Can RDT be modified to work in a secure

environment?

10. Consolidate CCC and DTC - Figure 68 illustrates how the hardware design of the

current CCC and DTC might be reengineered to facilitate the consolidation of both

the CCC and DTC into a single component. The PC and the SGI could, theoretically,

be replaced with a single, high-speed, multi-processing workstation that possessed

both Ethernet and RS-422 capabilities. This con.-rlidation would reduce the number

of serial devices in the data pipeline that are subject to failure and improve the

maintainability of the system.
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7.3 Lo oking Ahead

Thus far this thesis has documented the design, implementation, and performance

characteristics of the RDT yet it failed to answer the one question that champions a

project's survival and futue utility-'how can this new technology be applied to support

the Air Force mission-to Fly and Fight?' This section addresses that question directly

by looking first at RDT's current capabilities and then looking forward to capabilities that

can be developed by extending this technology.

7.3.1 Current Capabilities. To explore what is possible today, the assumption

must be made that funds would somehow be available to support the purchase of SGI

workstations and dedicated, high-speed communications lines. Given that assumption, the

following list details immediate applications for RD T.

"* Remote mission analysis for 57TG, 422TES. Fiber optic cables scheduled for instal-

lation in the near future at Nellis AFB could serve as the communications backbone

to the Red Flag building. RDT could be used to monitor test missions from their

local sites allowing greater visibility to supervisors and test personnel.

"* AL. crew debriefing at Red Flag. The thrust of RDT has always been to provide an

air-to-air debriefing tool with capabilities superior to any normally available to a

squadron. RDT can be used immediately at Red Flag as another resource to help

debriefing process.

"* Red Flag Familiarization Training. With additional SGI workstations and Virtual

Cockpit soitware developed at AFIT, inexperienced pilots could sit down at a rudi-

mentary flight simulator workstation and fly in a Red Flag exercise vicariously. Be-

cause the Virtual Coc:pit is another DIS application, telemetry information being

passed in the DIS PDUs is visible to the Virtual Cockpit. A young pilot could get

a feeling for the intensity of a Red Flag mission and some of the terrain before ever

strapping on a jet and putting his life on the line over the Nevada desert.
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" Planning Staff Feedback. SGI workstations running RDT at exercise planning staff

headquarters could provide immediate feedback to mission planners. Lessons learned

on-the-spot could be incorporated quickly into follow-on mission plans.

" Remote mission analysis for 99BW. Installation or lease of T-1 communication lines

between Nellis AFB and Ellsworth AFB, South Dakota would allow test missions

flown by the 99BW on the Nellis ranges to be monitored. With the addition of audio

and DIS replay capabilities, mission analysis could be conduclued at Ellsworth thus

reducing the need to deploy numerous individuals to Nellis for the mission test.

7 3.2 Future Capabilities. Looking a little further down the road to the time when

squadrons might have access to SGI workstations running RDT, Red Flag deployment

preparation would be superior to the local preparation now available. Squadrons could

begin monit ring the live Red Flag missions well in advance and learn first-hand what

tactics were working successfully. This cross-flow of tactical information could then be

used to improve the squadron's tactics. Members of the squadron not participating in the

deployment could monitor the squadron's success at Nellis and learn from their squadron

mate's successes and failures. Virtual Cockpit software would also allow them to participate

.s 'phantom wingmen' in the exercise.

By developing an independent "black box" containing a GPS receiver and sufficient

data storage, a simple device could be created which could be taken aboard any aircraft, or

vehicle. The device would record the aircraft's position and orientation. Once the aircrews

returned, the device could be taken to the squadron and the data downloaded into the

SGI workstation for an immediate mission replay capability. The format of the data would

be in accordance with the DIS standard thus allowing information exchange across either

local or wide area networks.

Such a device could drastically improve mission debriefs in both the training and

operational worlds. A complete mission analysis could be constructed quickly from the

RDT displays and because the data could be archived, a complete set of scenarios could

be constructed from live missions. These scenarios would show a trainee what the view

out-the-window is supposed to look like. "Classic" engagements could be analyzed over
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and over from any number of viewpoints. Virtual Cockpit software would allow additional

interaction with the stored scenarios and provide an opportunity to explore the 'what if'

situations. No longer would the air-to-air instructor be tied to using hands, sticks, models

or other training aids to convey the salient points of air combat maneuvering. The student

could be shown the correct maneuver as well as ways to avoid common mistakes.

Missions flown against other units with the GPS based devices would allow all partic-

ipants to view the mission simultaneously from remote locations by broadcasting their DIS

data onto the network during the mission debrief. The visual presentations of the RDT

displays and simple teleconferencing between the units could create a mission debriefing

session rivaling RFMDS.

If a transmitter could be incorporated into the device, a real-time monitoring device

could then be available in every squadron. The need for complex, instrumented ranges

might be drastically reduced. Everywhere a squadron flies would become an instrumented

range. Squadron supervisors could know the exact location of all of their aircraft. Aircrews,

using RDT, could increase their awareness of squadron tactics and standards and improve

their overall performance. A student in Undergraduate Pilot Training (UPT) could be

shown that the barrel roll he thought he flew was nothing more than a corkscrew and

then he could be given the opportunity to explore ways to improve the next time. Making

information available to the aircrews about their flight performance allows problem areas

to be identified early and firmly implants successful strategies in the aviator's mind.

The near future will also bring a capability for simulators to interact fully with live

aircraft. As the real and virtual worlds grow closer together, the need for a debriefing

tool that unites the activities of both worlds into a cohesive analysis will only intensify.

Large-scale exercises involving thousands of DIS entities, both live and simulated, are on

the horizon, and tools, such as RDT, which can provide the "big picture" to commanders,

planners, and aircrews alike will serve a vital role in improving tomorrow's capabilities.,
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Appendix A. Command State Dynamic Models

This appendix contains the state transition diagrams for each of the command states

of the user interface design described in section 4.1.2.2.

Figure 69 describes the states and the paths between them that are necessary to

select an aircraft with any of the aircraft select buttons labeled A/C. The region within

the dotted lines of Figure 69 is used in subsequent diagrams as a "black box" component

which determines whether or not the number entered by the user corresponds to an active

aircraft. No action is taken if the aircraft is inactive. if the aircraft number exceeds preset

limits, an error message is displayed. If the number is validated, that aircraft number is

made available to other functions within the IVC. This "black box" is used as a building

block in +he creation of complex activity paths.

Figure 70 illustrates the path that must be traversed in order to change the color of

a given aircraft or change the length of all of the aircraft's flight path history trails. Figure

71 shows how a file is selected to store weapon events occurring during a given mission.

Figures 72 and 73 portray how the data view control information is modified. Figure 73

L-so indicates the sequence of actions necessary to control the Pair" data view display.

Figure 74 shows how a single button press can be used to change the state of control panel

objects from on to off or vice versa. Figure 75 depicts the paths used to change between the

different 3D views and their subviews. Figure 76 illustrates how the control of the graphic's

window is managed so that the views can be enlarged from their normal 1/4 screen size up

to the use of the full screen. The "command state" needed to activate a larger positioner

which provides a finer level of view movement is shown in Figure 77. Figure 78 portrays

the path through states that must be taken in order to present information to a user about

a predefined topic.
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Appendix B. Convert

NAME
Convert -- Convert RFMDS message blocks to Ethernet packets

SYNOPSIS
convert [options]

DESCRIPTION
Convert is a program which parses out the individu'l

messages contained within the RFMDS CCS-to-DDS message blocks.
The source of the block may be either a disk file or V.35 port.
The disk file must be a raw, unfiltered, CCS data file. Messages
parsed out of the blocks by Convert are output onto Ethernet port
1500. Message output may optionally be saved to disk. The
program terminates on keyboard input.

OPTIONS
-b size

Sets the read buffer to size bytes. Default size
is 6144 bytes.

-h host
IP address of the machine that the messages are to be
sent to. For example, 129.92.101.111 -- Michelangelo

at AFIT (default IP address).

-r readfile
Name of the raw data file that is to be used for the
source of the RFMDS message blocks.

-w writefile
Name of the data file where the individual messages are
to be archived for later use by Readred.

-d
Enable debug mode.

EXAMPLES
convert -h 129.92.101.117 -r \RFMDSDAT\15JUL93.TLN

Read message blocks from the 15JUL93.TLN data file and
sends the individual messages to host 129.92.101.117 on
port 1500.
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convert

Here the Convert program reads mescage blocks
from the V.35 port and sends the individual messages
out port 1500 to host 129.92.101.111.

HARDWARE REQUIREMENTS
Convert runs on an 80386/80486 Computer with processor clock

speeds of at least 33Mhz. An Industrial Computer Source ACB5
V.35 interface card and a Western Digital 8003 Ethernet card are
also required. Clarkson, public domain, packet drivers are used
for the Western Digital Ethernet interface.

SOFTWARE SOURCE CODE
The source code for convert is archived at AFIT in

/usr/people/wb/src/RDT/ccc/rdt.pc.zip on the Onyx machines. This
compressed .zip file contains all of the source and libraries
necessary to compile and build an executable program. The .zip
file may be uncompressed by using the DOS PKUNZIP.EXE program .
The source code also exists on the 486 computer in the Graphics
Lab (Escher). The raw data file used by convert is located on
Escher in the \RFMDSDAT directory and is called 15JUL93.TLN.

BUGS
The write option as currently implemented does not generate

the correct data format. Planned correction of the problem is
scheduled for Jan 94.

AUTHOR
Bruce Clay with minor modifications by Mike Gardner (1993)
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Appendix C. Readred

NAME
Readred -- Translate RFMDS messages into DIS PDUs

SYNOPSIS
readred -d [networkidatafile] [options]

DESCRIPTION
Readred is the data translation component (DTC) of RDT.

Readred accepts individual RFMDS messages from either the convert
program as broadcast over an Ethernet network or from a disk
file. Output from the program consists of Entity State, Fire and
Detonation PDUs IAW the DIS v2.0.3 draft standard. When using
the network as a source of input, both the receive and send
daemons written by Bruce Clay must be installed on the host
system prior to running Readred. Only the send daemon is
required if the input source is from a disk file. (Ensure that
the port being used by the convert program is the same number as
the port being monitored by the receive daemon.) The Readred
program terminates after an input data file has been completly
read or the user interupts execution with a control-C.

The datafile used with Readred MUST have first been filtered by
the XFilter program. Readred will not function correctly if raw
RFMDS message blocks from a raw data file are used as input.

The redflag.cfg must be in the same directory as the executable
Readred. Redflag.cfg contains reference information about the
different message types used by RFMDS and the mappings between
the redllag aircraft type identification numbers and the DIS
Entity Type record. Mappings are present for both aircraft
and weapons. The format definitions for the Redflag.cfg
are included within the header information of the file.

All DIS PDUs generated by Readred use unique Entity ID record
values. Until a permanent site ID is assigned to Nellis AFB, 711
is used to identify the site and 99 is used to identify the host.
RDTdis looks for the 711/99 site/host values to differentiate a
live Red Flag participant from any of the other DIS entities on
the network. If these values change, corresponding changes in
the RDT Object Manager must also be made.

Additional output generated when the input source is a data file
consists of a tally of the number of individual D.FMDS messages
processed in the file except for message types 3 and 15. The
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tallys given for type 3, maneuver data, and type 15. weapons
data, reflect the Entity State PDUs generated as a result of the
RFMDS maneuvex and weapons data messages. Aircraft whose
location data is known to be questionable will not have PDUs
generated. A tally of the number of such occurances is also
displayed with the statistics. The elapsed time display reflects
the number of seconds used to process the file. The RFMDS elapsed
time reflects the difference between the first RFMDS range time
message in the file and the last range time message processed.

OPTIONS
-a

Analyze the network traffic for each of the high
activity aircraft. The amounts to a PDU talley for
each of the aircraft.

-b AircraftNumber
Restricts the broadcast of Entity State PDUs for all
high-activity aircraft except AircraftNumber. This
provides a way to isolate the activities of a single
high-activity player.

-e

Show non-fatal error messages

-f
Use a socket based interface to control activities
within Readred during execution. This has not been
tested and is considered unreliable.

-i [lolhilwpnlfdlall]
Print (inspect) the contents of the specified PDUs as
they are broadcast onto the network. (Debug option)
Select between low-activity, high-activity, weapons
(ES, FIRE and DETONATION), weapons (FIRE and DETONATION
only), or all PDUs.

-m
Print the PDU message definitions taken from the
redflag.cfg file. (Debug Option)

-n DeadReckoningThreshold
Specify a new position dead reckoning threshold
tolerance. The default tolerance is 10.0 meters.
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-o

Enable orientation dead reckoning. Not currently used.

-p
Print the contents of the participant records when they
are receivec (Debug option)

-r
Disabl6 dead reckoning. PDUs are generated for all
aircraft at the RFMDS 10Hz rate. If dead reckoning is
disabled inside Readred, dead reckoning inside RDTdis
should also be disabled. This combination allows a
direct input of the RFMDS data into RDTdis.

--S

Print (show) the RFMDS message types as they are
received.

-t

Enable TURBO mode. PDU and RFMDS time synchronization
is disabled. PDUs are broadcast as fast as possible.
The -t and -r options can be used for network
throughput testing since the maximum number of PDUs
are generated with these options enabled. (Only valid
for data file input. Network input is processed in
real time.)

-V
Verbose mode. Show all debug statements. Use only as
a last resort because of the volume of information that
is generated.

-x AircraftNumber
Extracts the time and location for the specified
AircraftNumber to the "xdata.log" file. These values
are stored in ascii format thus allowing them to be
used as input to programs such as GNUPLOT which can
then analyze the location information generated by
RFMDS.

Print REMDS weapons data. (Debug only)
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-z

Show Zulu Time. (Debug Option)

Examples:
radred -d data/ISJul.filter -n 1.0

Start readred using the 15Jul.filter data file and use a 1.0
meter dead reckoning threshold tolerance.

readed -d network -s -p

Execute readred with input data coming from the network.
Show the message types being processed and also print
the participant data when received.

readred -d data/:.SJl.filter -t -r

Disable dehd reckoning and time synchronization to send
PDUs as fast as the system will allcw. This is the maximum
throughput test mode.

readred -d network -x 24 -b 24

Entity State PDUs ior aircraft number 24 are broadcast
while all other Fatity State PDUs for high-activity aircraft
are suppressed. At the same time, the location data is
saved into xdata.log for ai.rcraft number 24.

SOFTWARE SOURCE CODE

The source code for teadred is located in the
/usr/people/wb/src/RDT/dtc directory.

SEE ALSO

C)nvert, XFilter

AUTHOR

Bruce Clay
Major Michael Gardner
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Appendix D. XFilter

NAME
XFilter -- Filter RFMDS message blocks

SYNOPSIS
xfilter [options]

DESCRIPTION
XFilter is a utility program that accepts as input a raw

RPNDS data file, which most likely was downloaded from magnetic
tape, and outputs a file containing consecutive individual RFMDS
messages. RFMDS message blocks sent to the VAX computer at RECOM
for post-mission analysis contain 6144 bytes. If the number and
contents of the individual messages contained within the block
does not fill the entire block the space remains unused.
Over the course of a single mission approximately 1/3 of the
space within the fixed size blocks is unused. The XFilter program
skips any unused portion of the block as it parses out the
individual messages. An additional filtering option is possible
with the -f switch.

XFilter's other primary use is to extract portions of the raw data file
int.- an output file by specifying the beginning block number and
the number of desired blocks to be filtered. The input block
size is 6144 bytes.

OPTIONS
-f

Filter out all BJFDS messages except the high and low
participant data messages, maneuver data message and the
low-activity data message. This switch effectively eliminates
all weapons information in the new output file.

SOFTWARE SOURCE CODE
The source code for xfilter is in the /usr/people/wb/src/RDT/xutils

directory. The only raw data file that exists at AFIT at present
is in the /nipper3/mgardner directory and is called 15JUL93.TLN.

AUTrHOR
Major Michael Gardner
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Appendix E. User's Manual

Welcome to the Remote Debriefing Tool (RDT) for Red Flag Missions. This user's

manual is designed to familiarize you with the basic operations of the RDT. The manual

contains three sections: Getting Started, Running RDTd,., and Performing Analysis Tasks.

E. 1 Getting Started

This section details the hardware and software requirements for setting up the pro-

gram. Also included are directions for setting up the data pipeline and configuring RDTdi,.

E.1.1 Required Hardware. The following equipment is required to create the

complete hardware pipeline from port 4 of the Red Flag Measurement and Debriefing

System (RFMDS) to the Interface and Visualization Component (IVC) workstation. Those

items which have an asterisk are the minimum items necessary for an abbreviated pipeline-

Readred using a data file and broadcasting to the IVC workstation.

Qty Item
3 V.35/RS-422 Protocol Converters
1 RS-422 Ribbon Cable with 3 connectors
1 RS-422 A/B Switch
1 RS-422 Cable, 100 ft.
1 ACB5 V.35 I/O Board for PC
1 Short V.35 cable from converter to V.35 PC board
1 Western Digital 8003 Ethernet Board for PC
1 Delni Fan-Out Box*
4 Thickwire Ethernet Cables*
2 Fiber Modems (Fiber - Ethernet)

1 Fiber Optic Cable, 100 ft.
1 IBM PC Compatible 80486 with Large Capacity Disk Drive
1 SGI Workstation (Single- or Multi-Processor)"
1 SGI Onyx RE2 Workstation*

Table 16. RDT Equipment List

(Note: Another possible configuration is to use only 'he Onyx workstation and have

Readred and RDTdi, running on the same machine. This configuration, however, yields

slower frame rates.)
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The equipment should be connected as shown in Figure 79. Because the active

"T" junction created to tap into the R.FMDS data stream directly affects data going to

the VAX computer, you must first coordinate with RECOM personnel for approval to

install the "T." As long as the V.35/RS-422 converters are powered, there should be no

interference with the RECOM operations. If, however, the "T" is deactivated, the 100

ft RS-422 cable serves as a great antennae and brings a lot of noise onto the lines. This

noise effectively shuts down the RFMDS-VAX communications link. The "T" must be

completely disconnected if it is powered down.

E.1.2 Required Software., All source and executable software for RDT is located

in the /usr/people/wb directories on the Onyx machines. The /usr/people/wb/bin/RDT

directory contains the executable software and the /usr/people/wb/src/RDT directory

contains the source code. The following files located in the "bin" directory are needed to

run the RDT:

"* RDTdis (executable)

"* afitlogo.rle

"* n37wll5.small.rgb (texture maps)

"* n37w115.small.rgb.attr

"* n37wl16.smaU.rgb

"* n37w116.small.rgb.attr

"• n37wl17.smafl.rgb

"* n37wl17.small.rgb.attr

"* n38wll5.small.rgb

"* n38w115.small.rgb.attr

"* n38wl16.small.rgb

"* n38w116.small.rgb.attr

"* n38w117.small.rgb

"* n38w117.small.rgb.attr

"* rdtEffectsMgr.dat

"* rdtLocalModelMgr.dat

"* rdtTerr-jnMgr.dat

"* MissionColors.dat
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"* rdtSGl[Default~olors.dat

"* rdtTypeMap.dat

"* readred (executable)

"* redflag.cfg

"* tub.flt

"* xfllter (executable)

In addition to the above ifiles, RFMDS mission data files must be available for use by

Readre~d as well as a set of Muitigen model files for RDT&.. A couple of suitable RFMDS

mission data files are located in the /usr/people/wb/bin/RDT/data directory. The mission

data files are:

"* l5Jul.filter

"* set.d3

The current model files located in the /usr/people/wb/binfRDT/models directory

include:

"* 707+a.flt

"* RedFlagTerrain.round.flt

"* alO-a~flt

"* b..flanae.flt

"* dflt-.model1l.flt

"* f-4-new.flt

"* fill.flt

"* f15c-ia.flt

"* fl5nolod.flt

"* f16+a.flt

"* falB+a.flt

"* flrebafl.flt

"* foker-aned.flt

"* mk82.flt

"* newRlFTerrainFlat.flt

"* sa2..misl+a..2.flt

"* sa3-misl+a-2.flt
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* sidewinder-plume.fit

• uh6O+a.flt

• yf22+-a.flt

E.1.3 Setting Up the Data Pipeline. The following subsections explain how to

start the software programs necessary to set up the data pipeline from RFMDS to the

Computer Communications Component (CCC), Data "£anslation Component (DTC) and

IVC.

E.1.3.1 Convert. Instructions for running the Convert program are con-

tained in Appendix B

E.1.3.2 Starting Daemons. In order for Readred to send distributed inter-

active simulation (DIS) protocol data units (PDUs), and for RDTd,, to receive PDUs, the

AFIT DIS daemons must first be started. Because only one send and one receive daemon

may run on a single machine, it is wise to first determine whether the required daemons

are active. Do this by using the ps -elf I grep sgi command from the UNIX prompt. If the

daemons are active, there will be an entry in the resulting display showing the name of the

process and any command line options that were used to start the daem-on. You should

pay partiL.Jar attention to the '-p' option. This determines which ports are being used by

the daemons for the network communication.

If you are setting up the system to run the Readred program, you must start a send

daemon and optionally start a receive daemon. The receive daemon is only required if you

will be receiving individual RFMDS messages from the CCC. If you are setting up the

system to run RDTd,o you need only start a receive daemon.

To start a receive daemon, change to the /usr/people/wb/bin/Daemons directory

and type sgirecvd -blO0 -p3O00 f. This will start a receive daemon using 100 buffers on

port 3000. Any port between 2000 and 6000 may be specified. If you desire the receive

daemon to receive PDUs from a send daemon on the same machine, use an additional -o

switch on the command line when starting the receive daemon.
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To start a send daemon, type sgisendd -b100 -p3000 6. This begins a send daemon

with 100 buffers on port 3000. The same port number assignments apply to the send

daemon as described for the receive daemon.

IT IS IMPERATIVE THAT THE SEND AND RECEIVE DAEMONS

BE CONFIGURED TO USE THE SAME PORT.

If you determine that one of the daemons is not configured to use the same port as

the other, you should stop the daemon and restart it. To stop the daemon type sgirecvd -q

or sgisendd -q depending upon which daemon needs to be terminated.

It is possible to have a daemon terminate and not release the semaphores associated

with it. Use a combination of the 'ipcs' and 'ipcrm' UNIX commands to remove the

semaphores. See the system documentation for details about these commands.

E.1.3.3 Readred. Instructions for running the Readred program are con-

tained in Appendix C

E.1.4 Configuring RDT. RDT was designed to allow as many changes to the

underlying DIS and RFMDS definitions as possible by using a number of configuration files

that are read during the initialization of RDTd,,. This same concept is used with Readred.

The following sections describe the procedures that can be used to make changes to the

RD T configuration.

E.1.-4.1 Model Managers. RDTdi, contains several Model Managers which

are responsible for determining the location of any geometric models that are needed for

the scene rend•cing. Four data files are used to communicate to the model managerE where

the models are located. The format for each of the data files is identical.

When the RDTdj. Net Manager determines that a new aircraft model needs to be

inserted into the scene, it first uses the Local Model Manager information to find the model

instead of using the Net Model Manager information. If the model cannot be located with

the Local Model Manager, the Net Model Manager is used to find an appropriate model

from the standard n: odels library (/usr/people/wb/models). This mechanism provides an
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override feature that is useful for replacing the standard library models with ones of your

own choosing.

The Effects Model Manager is used to locate the models that are used with munition

detonations, while the Terrain Model Manager is used to determine which terrain model

will be loaded into the scene geometry list.

Each of the data files used with the model managers is divided into two sections.

The first section contains an index number, directory name, and file name for each of

the models. The second section contains an object manager type number and the model

index numbers from section one that will be associated with the undamaged and damaged

entity's appearance, respectively. The object manager's type number is tied directly to an

enumerated type definition within the object manager software. This is the mapping that

the object manager uses to convert from the multiple-field DIS type definitions to a single

number. To change the model that is inserted for a given entity type, simply change the

model index numbers in section two. As new DIS entity types are added to the object

manager, additional mapping data will need to be inserted into section two. As new models

become available, assign new model index numbers and insert the directory/file names into

section one of the data files.

The rdtTerrainMgr.dat uses one additional field that the other model managers do

not use. This is the comment field in section two. If the comment field contains three

numbers, these are interpreted as the WGS84 (x, y, z) position of the origin for the terrain

model. Terrain models designed to be used with the DIS 'round earth' coordinates must

have this origin information included in the comment field. If the origin data is not present,

RDTd,, interprets the terrain as a fiat earth patch and the round-to-flat transformations

are not performed. To use other terrain patches with RDTdi,, simply comment out the Red

Flag terrain entries in the rdtTerrainMgr.dat file and add entries for the desired terrain.

E.1-.2 RFMDS-DIS Player Type .Iappings. Two data files are used to

map the player type definitions between RFMDS and DIS. The redflag.cfg file is used

by Readred while the rdtT,peMap.dat file is used by RDTdio. Both files should remain

relatively static and require little modification.
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RFMDS Type DIS Entity Type Comments
1 (122252101) A-4/1
2 (122252102) A-4/2

201 (122254100) KC-130
202 (122254500) KC-135
203 (122254600) KC-10

255 (122250000) Spare

Table 17. Extracts from redfiag.cfg

The redflag. cfg file is divided into two principal sections. Section one contains infor-

mation about the individual RFMDS messages. This data is no longer accessible, but is

still parsed by Readre& (There are still a number of clean up items that can be performed

on Readred and this is one of them.) Section two contains the RFMDS to DIS player type

mappings. Extracts of items from section two are found in Table 17.

For each of the 255 possible RFMDS aircraft types shown in column one, correspond-

ing DIS entity type definitions and aircraft names are given and shown in columns two

and three. RFMDS spare types are mapped to an undefined DIS entity type that causes

an object manager error message. The multiple entries for a single RFMDS aircraft in the

table correspond to different external store locations used to carry the AIS pod.

The rdtTyjpeMap.dat file is used to convert player types from the DIS definitions to

the RFMDS aircraft type definitions. The object manager used within RDTdi, defines a

single type number for each of the DIS entity types. It is the object manager's number

that is passed to RDTdi, and used for the conversion. Table 18 iMlustratts an extract from

rdtnTypeMap. dat.

Column one of the data file contains the first RFMDS type identifier that corresponds

to the object manager's type number. Column three contains comments. The object man-

ager's type number defined in common.enums.h and shown in column four is used as the

primary search key for the table. If either of the aircraft type identifiers used by RFMDS
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RFMDS RFMDS Comments ObjMgr Type #
Start # End #

0 0 Spare 0
1 5 A-4 133
6 7 A-6 134
12 19 A-7 135

201 201 KC-130 145

Table 18. Extracts from rdtTypeMap.dat

Red Green Blue Forms Color Comments
0 0 0 0 Index 0 - Black

195 0 0 80 Index 1- Red
0 0 255 4 Index 2 - .le

Table 19. Extracts from rdtColorTable.dat

or the object manager's type numbers change, both the redfiag. cfg and rdtTypeMap.dat

data files must be modified to reflect the changes.

E.1.5 Changing Colors. Aircraft numbers, call signs, and flight path trails are all

color coded to correspond to a particular mission role assigned to a player. For example, red

is used for the defensive-counter-air player's color, whiie blue is used for interdiction player.

Color assignments for the various mission roles are defined in the Computer Performance

Specification Interoperability volume, table 3.4.2-9, sheet 3-100. These assignments can

easily be changed by editing two data files-rdtMissionColors.dat and rdtColorTable.dat.

The rdtColorTable.dat file is used to create the RD7ýj, Color Table. This table

contains red, green, and blue (RGB) color values for each of the 11 colors currently defined

and used to draw the player numbers, call signs, flight path trr'is, and plan view symbology.

Table 19 represents an extract from the rdtColorTable.dat file used to build the Color Table.

Column four of the Color Table contains a color index, used by the Forms Designer,

that corresponds to the RGB color values in columns 1-3. The RGB values are used with
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Mission Role Color Comments
AAR 3 Green Index 0
ABCC 3 Green Index 1
ADF 1 Red Index 2
AMR 4 Yellow Index 3

Table 20. Extracts from rdtMissionColors.dat

the SGI graphics language library functions to draw the aircraft numbers, call signs, and

flight path trails. Thus, an aircraft with color number '2' will have its flight path trail

drawn in blue. The Forms Designer color index is used to color the button labels on the

'Mission Code auxiliary control panel to show the mapping between the mission roles and

the assigned colors.

Mission roles and the corresponding color assignments are made in the rdtMission-

Colors.dat file. Extracts from that file used to create the Mission Color Table are shown

in Table 20.

Mission role values assigned to each aircraft in the RPFMDS data range from 0 - 25.

For each of the 26 values, a color index is assigned that corresponds to the array index used

to reference the colors in the Color Table. As an example, assume aircraft number 10 is

assigned an ADF role. The RFMDS data would contain a '2' in the mission identification

(ID) field of the maneuver data message. The mission ID would then be translated to the

capabilities field in the Entity State PDU by Readred. RDTd,. would then use the color

value '2' as an index into the Mission Color Table. This value would be mapped to index

'1' in the Color Table and the RGB triple corresponding to the color red would be used to

draw the aircraft's number, '10.'

The number of colors available for mission roles and the current color mappings may

be changed by modifying either of the two data files described above. If additional colors

are added to the -"tColorTable.dai file, you must also determine the Forms Designer color

index corresponding to the RGB triple you are adding to the file.
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E.2 Starting RDTdi,

Once the data pipeline is set up, you arc ready to run RDTdi,. Change to the

/usr/people/wb/bin/RDT directory and type: RDTdis. No additional command line op-

tions are required. If the receive daemon is active, you should see a series of initialization

messages on the console. If the daemon is not running, RDTd,, will terminate. Addition-

ally, an eom.arena file in /usr/tmp that was created by another user may cause RDTdi,

to terminate. If the error message displayed on the terminal indicates that this is the

case, delete the /usr/tmp/eom.arena file and restart RDTdi.. To delete the file type:

rm /usr/tmp/eornarena. The remaining subsections describe the various controls of the

RDTd1. control panels and the methods used to manipulate views into the Red Flag envi-

ronment.

E.2.1 Device/Viewport Configuration. The first control panel that appears when

RDTdi. begins execution is shown in Figure 80. RDTd,1 's default configuration is set such

that the Plan View appears on the right graphics viewport and the 3D Views appear on

the left. This default configuration may be changed by pressing either the Plan View or

3D View buttons on the configuration control panel.

RDTdi. is currently configured to use only an SGI spaceball. Future implementations

may elect to add other view modifiers. Until that time, the Future Device buttons are not

used.

If changes are made to the default configuration, press the Accept button to incor-

porate these changes into RDTd,o. Information about the development of RDTd,. can be

viewed by pressing the About RDT(dis) button. After the desired configuration has been

accepted, press the "_continue button tc move to the RDTd,° master control panel. The

entire screen should go black momentarily while performer initializes the graphics window.

Once the master control panel and the terrain appear, RDTd,. is fully operational.

If no players appear, confirm that Readred's send daemon and RDTd, o's receive dae-

mou are using the same viewport. Also check to see that Readred is still broadcasting.
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Figure 80. Configure Panel

E.2.2 RDT Controls. The workstation monitor is divided into four quadrants.

The 3D View is in the upper left quadrant, and the Plan View is in the upper right

quadrant. The lower left quadrant, identified by the AFIT logo, serves as the location for

auxiliary control panels and data views. The master control panel, located in the lower

right quadrant of the screen, is operated by the user with a standard mt . Tbe individual

controls on any of the control panels are operated by clicking the left mouse button on top

of the desired button, slider or positioner. These mouse-based movements are also referred

to as selecting/pressing buttons or moving sliders and positione-s.

E.2.2.1 Control Panel Sections. Figure 81 shows the master control panel

and its logical subdivisions. The main keypad is in the upper left hand comer. The Toggle

buttons are in the upper center, and the Expand View and Quit buttons, as well as the

clock, are in the upper right hand corner. Directly under the Toggle buttons are the Plan

View controls. The positioner crosshairs, in the mijadle of the control panel, move the

Plan View's view position over the terrain in the upper right-hand quadrant. The '+'
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Figure 81. Master Control Panel

symbol indicates the current view position. Along the left hand side of tbe control panel,

you will find the 3D View controls. Located along the right hand side are the Data View

select buttons. The Help button is located in the lower right hand corner of the control

panel. The subsections that follow describe each of the controls on the master and auxiliary

control panels.

E.2.2.2 Help. Pressing the Help button on the master control panel acti-

vates the Help auxiliary control panel as depicted in Figure 82. At the present time, only

the Function Keys button will display any useful information. The remaining buttons are

present only to display a help capability.

E.2.2.3 Keypad. The keypad,, located in the upper left hand cormer of the

master control panel. is used to enter player identification numbers. (Players is a term

used to represent either aircraft. weapons. or other network entities.) RDTd,.. is currently

configured to allow up to 500 players. Player number assignments are enumerated in

Table 21.
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Figure 82. Help Panel

Player # Player Type
0 Bullseye Player

1 - 255 Red Flag Players
256 - 400 Red Flag Weapons
401 - 500 Network Entities

Table 21. Player Number Assignments

The keypad is activated when any A/C, FTR, or TGT button is pressed. Once

activated, the background color of the keypad's information window turns red. To enter a

player number, simply click on the numbers with the mouse, and then click on the Enter

button. Once the keypad is activated, the Enter button MUST be pressed. As long as

the background color of the keypad information window is red, the keypad is still looking

for a valid input. Pressing the Enter button changes the background color to green, and

deactivates the keypad. If the number entered correspond; to a player that is currently

active, the number is accepted. If the player is not currently active, the 'Inactive A/C'

message appears to inform you that the number you entered was ignored. (Note: As long

as the keypad background is red, many of the other controls on the panel are locked out.

Press the keypad Enter button to unlock.)

E.2.2.4 Spaceball. The SGI spacehall, which commuricates with the work-

station on port 2. can be used to modify the 3D Views in RDTd,,. The spaceball offers

six degrees of freedom: translation forward and backward, left and right, up and down,
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as well as pitch up and down, roll left and right, and twist left and right. In general,

pushing forward on the spaceball moves the view position forward along the view player's

orientation vector, and pulling backward on the spaceball moves the view in the opposite

direction. Pulling up and pushing down on the spaceball correspond to vertical movements

of the view position. Twisting the spaceball left or right rotates the view around the view

position's local vertical coordinate axis. Roll inputs to the left and right are currently

ignored in this application, however, rolling the spaceball forward causes the view to pitch

down and rolling the spaceball backward causes the view to pitch up. The view posi-

tion translations and rotations just described are only applicable if the view orientation

is 'straight and level.' Once the view orientation changes, such as when the 3D View is

attached to an aircraft performing some 3-dimensional rolling maneuver, the conventional

notions of movement with the spaceball change. The next paragraph explains why.

The 3D View's position and orientation is determined from the currently selected 3D

View. This position and orientation in the world coordinate reference frame becomes a

local reference frame for inputs taken from the spaceball view modifier. Thus, a forward

movement on the spaceball translates the view forward along the view orientation vector.

For example, assume we are attached to an aircraft pointing straight down in the world

coordinate reference frame. Pushing forward on the spaceball, moves the view forward in

the local reference frame, but that forward movement translates to a downward movement

in the world coordinate reference frame. Pulling the spaceball backward translates the view

in the local reference frame backward but that translates to a vertically upward movement

in the world coordinate reference frame. If this all seems a little confusing, here is another

example to clarify how the spaceball modifies view positions and orientations.

Presume that the tether view has been selected and that you would like to view the

front of the aircraft. Pushing forward on the spaceball will translate the view position

forward along the aircraft's heading until the desired position in front of the aircraft is

reached. Twisting the spaceball left or right will rotate the view around until the front

of the aircraft is visible. So far, everything seems normal. If, however, you wanted to

move the view position closer to the front of the aircraft, you would have to pull the

spaceball backward, instead of pushing the spaceball forward, to get the desired movement.
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Twisting inputs on the spaceball do not modify the base orientation of the 3D View.

Translation inputs from the spaceball are combined with the base orientation of the 3D

View to determine the modified view's final orientation.

Because the view modifications are made in the local reference frame, the spaceball

has limited usefulness when the 3D View position is not oriented 'straight and level.' A

view reset button located on the forward surface of the spaceball nullifies any previous

spaceball inputs. The spaceball is best suited for the Anchor and Detach Views and has

limited utility with the other views.

Buttons 1-4 on the front of the spaceball support are used to increase/decrease the

translation and rotation sensitivity of the spaceball. Pressing button 1 or 3 increases the

spaceball sensitivity for translations and rotations respectively. Pressing button 2 or 4

decreases the sensitivity.

E.2.2.5 Plan View. Two controls associated with the Plan View are the the

Positioner window and the Range slider, located immediately to the right of the Positioner.

The number at the top of the Range slider represents the number of miles "visible" in the

Plan View. The Range slider is used to move the view position vertically up and down and

produces the same effect as the zoom feature on a camera. Moving the Range slider to the

top gives you the widest possible view, with a maximum horizontal range of 200 miles.

The intersection of the crosshairs in the Positioner window represent the relative

position of the cursor, '+', in the Plan View. Clicking the mouse anywhere in the Positioner

window moves the crosshairs to the mouse position, with a corresponding movement of the

cursor in the ri-n View. Latitude and Longitude windows, located below the Positioner

window, display the world coordinates of the cursor in the Plan View.

Pressing the Refine button, to the right of the Latitude and Longitude windows

on the master control panel, brings up the Refine auxiliary control panel illustrated in

Figure 83 and deactivates the Plan View controls on the master control panel.

The purpose of this auxiliary control panel is to allow finer movements of the cursor

over the ter, ain. The controls associated with this control panel are identical to the Plan

180



Figure 83. Plan View Panel

View controls on the master control panel. To remove the auxiliary panel, simply press

the Done button on the lower right side.

E.2.2.6 3D Views. There are three main 3D Views-Centroid, Cockpit, and

Tether. The Tether View has two subviews: Anchor and Detach. Use the buttons on the

left side of the master control panel to switr± between these views. A green light next to

the button indicates which view is currently active. Only one may be active at a time.

Centroid View. The Centroid View focuses the viewing volume upon

the selected players and automatically repositions the view volume to keep these centroid

players in sight at all times. Pressing the Centroid button brings up the Centroid auxiliary

control panel, activates the heading and elevation sliders (located just below and to the

right of the Centroid button, respectively), and deactivates the Cockpit and Tether buttons.

When the Centroid auxiliary control panel of Figure 84 is visible, you may select

up to four players upon which to center the view. These players may be selected in any
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Figure 84. Centroid View Control Panel

order. First, press an A/C button and use the keypad to enter the player number. Repeat

this procedure for all four players. Pressing the Reset button erases player numbers from

the Centroid auxiliary control panel windows. Once a player number has been selected

and validated by the keypad, the background color of the window containing the number

changes from green to lavender. When all selections have been completed, press the Accept

button to change the view in the upper left quadrant of the screen. The view will not change

until the Accept button has been pressed. After the Accept button has been pressed, the

background color of the player numbers changes from lavender back to green to let you

know that the view has been accepted.

The Centroid View's position b-,d orientation can be changed with the heading and

elevation sliders as long as the Centroid auxiliary control panel is visible. The horizontal

heading slider can be used to modify the view orientation. The default view heading is

000 or North. A window immediately to the left of the heading slider indicates the current

view direction. Moving the slider to the right moves the heading from 000 to 359. A value

of 090 in the window indicates that the view is oriented to look to the East.

The Elev slider, which doubles as the Speed slider for the Detach subview, can be

used to change t.-e Centroid View's position from directly ovrrhead to a position level

with the center coordinate of the selected centroid players. A window at the top of the

Elev slider indicates the current view elevation. The default elevation is 090, or directly

overhead.
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After you have finished selecting the centroid players and have set the Centroid

View's heading and elevation, press the Done button to hide the Centroid auxiliary control

panel, deactivate the heading and elevation sliders, and reactivate the Cockpit and Tether

buttons.

Cockpit View. The Cockpit View is attached to a position a fixed

distance from the origin of the player's geometric model. This view allows you to see the

exercise from a pilot's point of view. The generic head-up display (HUD) is visible in this

view.

To select the Cockpit View, press the Cockpit button on the left side of the master

control panel. Press the A/C button, located immediately above the Cockpit button, to

attach to a player.

Tether View. The main Tether View is attached to a position directly

behind a player along the flight path vector. To select the Tether View, press the Tether

button on the left side of the master control panel. Press the A/C button to tether to a

player.

In the Anchor subview, the view position is determined by the crosshairs on the Plan

View Positioner window. The spaceball allows you to modify your view orientation. The

Anchor subview is useful for setting a view position on or near the ground at a target

location. This allows analysis of a flight's geometry, spacing, and timing as it attacks a

target. To select the Anchor subview, press the Anchor button, located below the Tether

button, while the Tether View is activated.

Pressing the Detach button, located immediately below the Tether button, allows

you to "fly" anywhere through the environment. Use the spaceball to control your heading

and pitch and the Speed slider on the right side of the 3D View control area for your

airspeed. The airspeed is indicated in the window directly above the Speed slider and

may range from -90 knots to 3000 knots. An asterisk on the Plan View screen shows your

location.
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Figure 85. Flight Data View Panel

E.2.2. 7 Data Views. Press one of the four Data View buttons ýn the right

side of the master control panel to bring up specific data about an individual player and

its identity. The selected Data View auxiliary control panel will be displayed in the lower

left hand quadrant of the screen. The None button hides any of the Data views.

Flight and Engineering Data Views. The Flight and Engineering

Data View auxiliary control panels are identical in the way they are operated. The only

difference between the two Data Views is the information contained in the bottom portion

of the display window. See Figure 85.

In order to review flight or engineering information about a player, press one of the

A/C buttons at the top of the panel. The default setting displays information about player

numbers 1-8. Pressing a single arrow button to the right or left of the scroll window at

the top of the panel increases/decreases the number in the scroll window by one. This

number corresponds to the player number in the leftmost column of the display. Selecting

the double arrow button increases/decreases this number by 8.
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The information in these Data Views is primarily intended for use with the Red

Flag high. and low-activity aircraft. Therefore, when scrolling, you will notice that the

allowable values are 1-40 and 100-200. Information about players outside of these ranges

require you to manually enter the player number by pressing one of the A/C buttons and

using the keypad.

Exercise Data View. The Exercise Data View provides the following

information about a player: identity, call sign, time of last position update, player type,

and mission role. This view only provides a "snapshot" of the information available at the

time the Exercise button is pressed and is not continuously updated. Press the Refresh

button at the top left of the Exercise Data View auxiliary control panel to update the

information. Data regarding any player for which PDUs have been received will be shown.

In order to remove information about inactive/deleted players, press the Remove Inactive

button on the upper right of the panel. The scroll bar, located to the left of the display

area, is visible only when the amount of information exceeds the panel's display capacity.

Move the scroll bar up and down to reposition the information displayed. An illustration

of the Exercise Data View Panel is shown in Figure 86.

Weapons Summary Data View. The Weapons Summary Data View

auxiliary control panel shows a synopsis of all of the fire and detonation events occurring

during an exercise session. Unlike the Exercise Data View, the Weapons Summary View

is updated each time a new event is received. Information about these events includes:

time, type of event, weapon launcher and target, hit or miss and a reason for miss code,

bearing, range, altitude difference, and closing velocity at the time of the event, This data

can be saved to a disk file by pressing the Log button in the lower right corner of the

master control panel. The Erase button in the upper right corner of the panel removes all

weapons events from the display. See Figure 87 for a depiction of this control panel.

RFMDS identifies 90 reasons for a miss in one of its weapons simulations. Tables 22,

23, 24, and 25 contain an itemized list of these reasons and their respective codes.
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Figure 86, Exercise Data View Panel

Figure 87. Weapons Summary Data View Panel
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Miss Value Miss Descript;on
0 Hit
1 Excessive lag heading
2 Excessive lead heading
3 Inside minimum range
4 Outside maxinmm range
5 Insufficient missile velocity
6 Gimbal limit exceeded
7 Seeker lost lock, excessive LOS rate
8 Exceeded missile maneuver capability
9 Interceptor radar not locked at launch
10 Insufficient closing velocity at time of launch
11 SEAM tone absent (training Sidewinder)
12 Sensor masked by terrain
13 Missile acquired the sun
14 Launcher radar broke lock (radar lock information

available). Launcher radar outside gimbal units
(radar lock information unavailable)

15 Replica sensor defeated (vice simulated sensor)
16 Intercept time less than safe arming
17 Inadequate missile settling time
18 Exceeded allowable miss distance (missile simulation).

Very large aiming error (gun simulation)
19 Outside of gun or platform operating range

(not now implemented)
20 Exceeded maximum flight time
21 Aiming lagged target (guns only)
22 Spare
23 SEAM angle or tone not available/incorrect
24 IR signal strength adversely affected seeker

performance at launch
25 No remaining ammunition (guns only)
26 Possible clutter
27 Rate of change of closing velocity too large for

missile to track doppler
28 Wide doppler gate selected (radar missiles only)
29 Insufficient closing rate
30 Dogfight mode improperly set

Table 22. Weapon Simulations Miss Reasons (3:A-131-A-137)
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Miss Value Miss Description
31 Probabiiistic miss
32 No IR target capability in front hemisphere
33 JR signal strength adversely affect seeker performance

during flight
34 High launcher angle of attack/sideslip adversely

affected missile performance
35 Incorrect or out-of-range input
36 Outside missile seeker range
37 Insufficient lead heading
38 Seeker field-of-view exceeded
39 Excessive angle off tail
40 Incorrect switch settings
41 Exceeded launcher G limit
42 Control burnt out
43 Radar status (threat radar turned off during

missile flight)
44 Minimum angle with horizon attained
45 Missile intercepted the ground
46 Gun pointing error
47 Missile model invalid
48 Sensor elevation gimbal lock
49 Roll gyro gimbal lock
50 Missile locked onto flare
51 Missile decoyed by chaff
52 Missile decoyed by expendable jammer
53 Missile decoyed by onboard jammer

54,-60 Spare

Table 23. Weapon Simulations Miss Reasons, Continued (3:A-131-A-137)
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Miss Value Miss Description
61 Sensor killed before weapon intercept
62 No target
63 Simulation not available
64 Missile failed to leave the rail; determined by

comparison the probability of a launch failure
for a particular missile and a random number

65 Out of AIM-7 missiles
66 Out of AIM-9 missiles
67 Target aircraft has already been scored dead

when fighter shoots
68 Target is scored dead after fighter shoots,

but before missile intercept
69 AIM-9 shot is attempted when system detects no

coolant has been present
70 AIM-7 missile is terminated when target ceases to

be illuminated because fighter is subsequently scored
dead or changes illumination mode (CW-PD)

71 Sufficient tone present, but no target aircraft
detected

72 Insufficient I.R_ tone present
73 Out of anti-radiation missiles
74 No weapon in inventory slot
75 Threat out of SAM's
76 Launch aborted due to bad aircraft track
77 AIM-7 trigger received but aircraft not carrying AIM-7
78 AIM-9 trigger received but aircraft not carrying AIM-9
79 ARM trigger received but aircraft not carrying ARM
80 Phoenix trigger received but aircraft not carrying

Phoenix

Table 24. Weapon Simulations Miss Reasons, Continued (3:A-131-A-137)
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Miss Value Miss Description
81 No Phoenix stores remaining
82 AIM-9 arm switch off
83 Out of weapon
84 No displayable event
85 Simulation terminated successfully
86 Out of laser guided bombs
87 Laser guided bomb trigger received but aircraft

not carrying laser guided bombs
88 No laser designated target or laser guided bomb

outside of laser cone
89 Invalid Phoenix missile mode at launch
90 AIM-54 missile is terminated when target ceases

to be illuminated because fighter is subsequently
scored dead or changes illumination mode

Table 25. Weapon Simulations Miss Reasons, Continued (3:A-131-A-137)

E.2.2.8 Pair Data. The Pair Data View auxiliary control panel is selected

by pressing the Pair button at the bottom of the Data View control area on the master

control panel. Activating this panel provides the following information about two players:

range, bearing, closing velocity, altitude difference, aspect angle, and antenna train angle.

Press the FTR and TGT buttons at the top of the display to pair two players and initiate

the display calculations. The Reset button is used to erase all players from the FTR/TGT

windows. Press the Pair button on the master control panel a second time to remove this

panel. An illustration of this panel is contained in Figure 88.

E.2.2.9 Event Logging. Weapons events may be recorded to a disk by

pressing the Log button, located in the lower right hand corner of the master control

panel. A File Select panel will appear in the center of the screen. Press the Enter button

on the computer keyboard to accept the default file name shown in the File Select panel

or use the mouse and keyboard to enter a new file name. A green light will appear next

to the Log button to ind:cate that this function is active. The panel disappears when the

Enter button on the keyboard or the Cancel button on the File Select panel is pressed. To

disable event logging, press the Log button a second time.
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Figure 88. Pair Data View Panel

E-.2.2 10 Aircraft Att-ibutes. The Aircraft Attribute auxiliary control pan-

els allow you to change the length of the flight path history trails and the color assignment

o: a particular player. To activate this panel, press the A!C Attributes button located

above the Plan View controls.

To change the length of the flight path history trails, move the slider to the right or

left and press the Accept button. The length of the trails, measured in seconds, may range

from 0-60.

To change a player's mission color, press the A/C button and enter the player number.

Once this number has been verified by the keypad, the Mission Codc auxiliarn control panel

will be displayed. Press the button for the desired mission roie. Pressing the Done button

removes both panels. Figure 89 shows these panels.

E.f.2. 1: Vic'u Toggles. Several of the display features and functions asso-

ciated with RDTd,, can be turned on and off with the Toggle buttons located at the top

of the master control panel.

Press the Call Signs button to switch the player identification between the player

number and at. alpha-numeric call sign.

Press the Weapons Data button to display the four most recent weapons events in

the lower right corner of the 3D or Expanded View.
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Figure 89. Attribute Panels

Pressing the Low Activity button effectively hides tLe low-activity players from both

the Plan and 3D Views by removing the player identification number/call sign and down-

scaling the model size. (Any player number other than 1-36 is considered a low-activity

player for this toggle.) A second press of the button restores the display of low-activity

players.

Press the Dead Reckoning button to turn dead reckoning off and on. This does not

affect Readred's dead reckoning computations.

Press the Geo Labels button to turn the geographic reference point labels on and off.

These include range boundaries, restricted areas, and single-letter ground reference points.

Pressing the Flight Paths button turns the flight path history trails on and off. This

does not affect flight path trails used to locate players selected for focus in the centroid

view.

E.2.2.12 Time Reset. The range time displayed in the lower left hand

corner of both the Plan and 3D Views is derived from information embedded in the Entity
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State PDUs. This time represents the most recent time received and is not a real-time

clock. The DIS standard requires that active entities broadcast Entity State PDUs at least

once every five seconds; therefore, the displayed range time may jump in increments of up

to five seconds. A hidden button on the clock face in the upper right hand comer of the

master control panel will allow you to reset the range time to 00:00:00:00. Press the center

of the clock face to activate the button.

E.2.2.13 Expanding Views. To expand views from the 1/4 screen mode to

1/2 screen mode, presa one of the expand buttons in the upper right hand comer of the

master control panel, next to the clock. These are toggle buttons. Press again to return to

1/4 screen mode. If you have pressed the expand button and are in the 1/2 screen mode,

you may also expand one level further to full screen mode by pressing the F3 function

key on the computer keyboard. This action places the master control panel underneath

the full screen graphics window. All other control panels remain visible. Pressing the F4

function key returns you to the 1/2 screen mode and places the master control panel on

top of the graphics window and any other auxiliary panels. In most cases, reselecting the

appropriate auxiliary panel button will make it visible again.

When you are in the full screen mode, pressing the F1 function key on the computer

keyboard will bring the master control panel into view without resizing the graphics win-

dow. Pressing the F2 function key will hide the master control panel. This is useful for

making momentary control inputs while allowing you to remain in the full screen mode.

E.2.2.14 Quit. You can quit RDT by either using the Quit button on

the upper right hand side of the master control panel under the clock, or by pressing the

Escape button on the computer keyboard.

E.3 Performing Analysis Tasks

Directions for analyzing various types of data and performing analysis tasks not

previously described are included in this section.
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E.S.1 Bullseye Analysis. A bullseye point is a geographic reference point known

to the participants in an exercise. Airborne and ground controllers use this known reference

to point out enemy or unknown aircraft to friendly players. As an example, the call,

"Bandits, bullseye, 210, 20" indicates that enemy aircraft are located at a range of 20

nautical miles from the bullseye point on a magnetic bearing of 210 degrees. All friendly

aircraft may then calculate the position of the bandits relative to their position. The

bullseye point is displayed only in the Centroid View with player number '0' selected.

The position of the bullseye player is set by using the plan view positioner and

referencing the latitude/longitude displays. Alternatively, the bullseye position may be

set by referencing the terrain texture map and setting the position over a known ground

reference.

Pair data is also available for the bullseye player. Just enter '0' as the FTR on the

pair data form. Entering an active player into the TGT position on the pair data form

will then enable the pair calculations and provide the needed bearing and range from the

bullseye point to the TGT.

E.3.2 Data Reliability. The reliability of the RFMDS tracking systems can

be determined by referencing the Flight Data View auxiliary control panel and noting

three fields: filter, mode, and Itrace. The filter field indicates whether the position tracks

processed by the RFMDS data filters are 'OK' or 'Unreliable.' The mode field gives an

indication of the accuracy of the aircraft's position by showing whether the position is

being calculated normally or is being predicted. The Itrace field is another method used to

determine the accuracy of the data. Reference Table 26 for a description of the ir 4 :vidual

Itrace values.

E.3.3 Vertical Airspace Depiction. A vertical depiction of the airspace is useful

to determine the altitude separation between aircraft and to ensure that altitude block

assignments are not violated. Either the Centroid View or the Tether View may be used

to show a vertical depiction.
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Values Conditions of Filter Internal Operation
0 Filter output data all available
1 Filter is in multilateration mode
2 Ranging matrix not positive definite
3 Tracking aided by radar altimeter
4 Tracking on less than three ranges
5 Tracking on radar measurement and less than two ranges
6 Tracking on barometric measurement and less than

two ranges
7 Downlink data consistency failure
8 Filter output data consistency failure
9 All ranges and baro and radar altitude fail filter editing
10 Total filter blanking (downlink and ranging failure)
11 Data unreliable after initialization
12 Uplink data failure
13 All ranges fail gross checks and baro and radar

altitude invalid
14 Baro-aiding required but not available
15 TIS input buffer checksum error
16 Excessive uplink parity failure
17 Excessive roll rate during initialization or uplink

correction limited to what initialized pod will accept
18 Tracking aided by barometric measurement
19 No downlink air data
20 Aircraft off range with ITRACE of zero
21 Possible mirror image solution removed from DDS

until confirmed
22 Terrain map z used as a measurement to update filter z
98 Whole value uplink requested by AIS
100 Filter restart, critical cycle
101 Filter restart, excessive blanking
102 Filter restart, excessive uplink data failures
103 Filter restart, excessive uplink parity failures
104 Filter restart, excessive downlink data failures
105 Filter restart, excessive output data consistency

failures
106 Filter restart, excessive roll during initialization
108 Filter restart, excessive tracking on altitude

measurement only
200 New aircraft, begin initializa ion

Table 26. RFMDS Itrace Values (3:A-72)
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If the Centroid View is used, the view elevation slider can be set to the zero degree

position. This positions the centroid viewpoint level with the exact vertical midpoint of

the selected aircraft. Thus, some of the aircraft will appear above the viewpoint position

and some below. This may be sufficient for a small set of the aircraft immediately visible

in the centroid view volume.

If the Tether View is used, the Anchor subview must be selected. The anchor view-

point elevation is initially fixed at approximately 7400 ft, but may be modified by the

spaceball. To use the Anchor subview for a vertical position first set the location of the

anchor viewpoint by moving the Plan View positioner and then twist the spaceball to ro-

tate the view volume until the desired players are within the field of view. If the bullseye

has previously been selected as one of the centroid players, the bullseye position will need

to be reset if the anchor viewpoint position was modified.

E.3.4 Locating Aircraft. The simplest means of locating an aircraft is to use the

Where is... button. First, enter the number of the aircraft to be located into the keypad

by pressing the A/C that is immediately above the Where is... button. Second, press the

Where is... button. The Plan View's position is moved to a point directly over the desired

player's prsition.

E.3.5 Trouble Shooting. As with many programs, anomalies may occur. This

subsection contains possible explanations for some of the anomalies you may notice during

a session with RDT. Table 27 may be used as a trouble shooting guide. It contains a list

of all of the known irregularities encountered to date.

Some of the problems listed in Table 27 are a direct result of the UDP/IP commu-

nications protocol at the heart of the DIS standard. Some PDUs are not recovered from

the network and thus, notification of fire or detonation events may not be received. No

definitive solution has yet been found to overcome this problem.
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Problem Explanation Corrective Action

Weapon update time Fire PDU not received None
shows 00:00:00:00

Non-Red Flag player None
Weapon never detonates Detonation PDU not received None
Weapon originates at Launching platform unknown None
terrain origin
Aircraft orientation Most likely cause is bad Confirm RFMD.; data
is incorrect RFMDS data. See Table 26 for reliability with the

explanations of Itrace values Flight Data View
Flight path trail Player is decelerating None
appears ahead of the and the dead reckoning
aircraft calculations are predicting

a new position ahead of
the aircraft

Aircraft not visible but Flat-earth terrain Restart with a
but data is available patch is used with round-earth terrain

round-earth data patch
Program terminates Performer vl.2 anomaly Consult SGI
abnormally with a
Performer fatal error:
uspsema(34)
Black polygons become Performer vl.2 anomaly Consult SGI
visible in scene
Earth/Sky just above Performer anomaly Consult SGI
horizon blanks out This problem is related

to the position of the
far clipping plane

Table 27. Trouble Shooting Guide
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